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PREFACE.

——

HE object of the following treatise is to exhibit the
elementary principles and notation of the Quaternion

Calculus, so as to meet the wants of beginners in the
classroom. The Elements and Lectures of Sir William
Rowan - Hamilton, while they may be said to contain the
suggestion of all that will be done in the way of Quater-
nion research and application, are not, for this reason, as
also on account of their diffuseness of style, suitable for
the purposes of elementary instruction. Tait’s work on
Quaternions is also, in its originality and conciseness,
beyond the time and needs of the beginner. In addition
to the above, the following works have been consulted :

Calcolo dev Quaternione. Bellavitis; Modena, 1858.

Exposition de la Méthode des Equipollences. Traduit
de I'Ttalien de Giusto Bellavitis, par C.-A. Laisant; Paris,
1874. (Original memoir in the Memoirs of the Italian
Society. 1854.) '

Théorie Klémentaire des Quantités Complezes. J.
Hoiiel ; Paris, 1874.

Essai sur une Manidre de Representer les Quantités
Imaginaires dans les Construction Géométriques. Par
R. Argand; Paris, 1806. Second edition, with preface
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by J. Hotiel; Paris, 1874, Translated, with notes, from
the French, by A. S. Hardy. Van Nostrand’s Science
Series, No. 52; 1881.

Kurze Anleitung zum Rechnen mit den (Hamilton schen)
Quaternionen. J. Odstréil; Halle, 1879.

Applications Mécaniques du Calcul des Quaternions.
Laisant; Paris, 1877.

Introduction to Quaternions. Kelland and Tait; Lon-
don, 1873.

A free use has been made of the examples and exercises
of the last work; and, in Article 87, is given, by permis-
sion, the substance of a paper from Volume I., page 879,
American Journal of Mathematics, illustrating admirably
the simplicity and brevity of the Quaternion method.

If this presentation of the principles shall afford the
undergraduate student a glimpse of this elegant and pow-
erful instrument of analytical research, or lead him to
follow their more extended application in the works above
cited, the aim of this treatise will have been accomplished.

The author expresses his obligation to Mr. T. W. D.
Worthen for valuable assistance in the preparation of
this work, and to Mr. J. S. Cushing for whatever of

typographical excellence it possesses.
A. S. HARDY.
HANOVER, N.H., June 21, 1881.
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QUATERNIONS.

— e

CHAPTER 1.

Addition and Subtraction of Vectors, or Geometric Addition and
Subtraction.

1. A Vector is the representative of transference through a
given distance in a given direction.

Thus, if A, B are any two points, vecfor AB implies a trans-
lation from A to B.

A vector may be represented geometrically by a right line,
whose length denotes the distance over which transference takes
place, and whose direction denotes the direction of the trans-
ference. In thus designating a vector, the direction is indicated
by the order of the letters.

Thus, aB (Fig. 1) denotes transference
from A to B, and BA from B to A.

Retaining the algebraic signification of the signs + and —, if
AB denotes motion from A to B, then —aB will denote motion
from B to A, and

Fig. 1.
A B

AB= —BA, —AB=BA . . . . (1).

Hence, the effect of a minus sign before a vector is to reverse
its direction.

The conception of a vector, therefore, implies that of its two
elements, distance and direction; it was first defined as a directed
right line. It is now applied more generally to all quantities
determined by magnitude and direction. Thus, force, the path



2 QUATERNIONS,

of a moving body, velocity, an electric current, etc., are vector
quantities.

Analytically, vectors are represented by the letters of the
Greek alphabet, a, B3, v, ete.

2. It follows, from the definition of a vector, that all lines
which are equal and parallel may be represented by the same vec-
tor symbol with like or unlike signs.

Fig. 2. If equal and drawn in the same
° 2 direction, they will have the same
A B/ 2 ¥ sign. Hence an equality between
AN : two vectors implies equality in dis-
tance with the same direction.

Thus, if aB (Fig. 2), cp, BE, EF
and He are equal and drawn in the same direction, they ma.y be
represented by the same vector symbol, and

AB=CD=BE=EF=HG=a . . . . (2).

3. It follows also from the definition of a vector that, if vec-
tors are not parallel, they cannot be represented by the same
vector symbol.

Thus, if the point o (Fig. 8) move over the right line as,
from A to B, and then over the right line B¢, from B to ¢, and

AB = ¢, BC must be denoted by

¥ig. 3. some other symbol, as 8.
¢ The result of these two succes-
sive translations of the point A is
B the same as that of the single and
direct translation ac=y, from A to
(7 B c; in either case A is found at the
extremity of the diagonal of the
parallelogram of which AB and Bc are the sides. This combina-
tion of successive translations is called addition, and is written

in the ordinary way, at+B=y . . . « . . . (3.

D

This expression would be absurd if the symbols denoted mag-
nitudes only. It means that transference from A to B, followed
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by transference from B to ¢, is equivalent to transference from
A to c. The sign 4 does not therefore denote a numerical ad-
dition, or the sign = an equality between magnitudes. It is,
however, called an equation, and read, as usual, “a plus B is
equal to y.” This kind of addition is called .geometric addition.

4. If the point o (Fig. 3), instead of moving over the sides
AB, BC of the parallelogram aBcp, had moved in succession over
the other two sides, Ap and pc, the result would still have been
the same as that of the single translation over the diagonal Ac.
But since AB and BC are equal in length to pc and ap respect-
ively, and are drawn in the same direction, we have (Art. 2)

AB=DpC and BC= AD,

and if the first two translations are represented by aB and Bc,
the second two may be represented by Bc and aB, or

at+B=B+a=y . . . . . (4.

Hence the operation of wvector addition is commutative, or the
sum of any number of given vectors is independent of their order.

5. If the point a (Fig. 4) move in succession over the three
edges AB, BC, cG of a parallelopiped,
we have . Fig. 4.
AB 4 BC = AC,
and
AC + CG = AG,
or

(AB + BC) + €6 = AG.

H

]

1

1

]

1

]

- D |

In like manner

BC 4 CG = BG,
AB -} BG = AG,

or
AB + (BC + €G) = AG. 4 B

Hence (aB+BC)+cc=4aB+(BC+ce) . . . (5),

and the operation of vector addition is associative, or the sum
of any number of given vectors is independent of the mode of
grouping them,
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6. Since, if Ac=1y (Fig. 3), then cA = —y, we have
a+pB—y=0,
or, comparing with equation (3),
i a+ B =7
a term may be transposed from one member to another in a vector
equation by changing its sign.
Also, in every triangle, any side may be considered as the

sum or difference of the other two, depending upon their direc-
tions as vectors. Thus (Fig. 3)

y—B=a,

y—a=

It is to be observed that no one direction is assumed as posi-
tive, as in Cartesian Geometry. The only assumption is that
opposite directions shall have opposite signs. The results must,
of course, be interpreted in accordance with the primitive as-
sumptions. Thus, had we assumed Bao=oa (Fig. 8), y and 8

being as before, then
e ’ B —a=Y,

a—fB=—~1.

7. If two vectors having the same direction be added together,
the sum will be a vector in the same direction. If the vectors
be also equal in length, the length of the vector sum will be twice
the length of either. If n vectors, of equal length and drawn
in the same direction, be added together, the sum will be the
product of one of these vectors by n, or a vector having the same
direction and whose length is n times the common length. If
then (Fig. 2)

_ AF = TAB = ZCD = %a,
where A, B and ¥ are in the same straight line, cp = B, and «
is a positive whole number, # expresses the ratio of the lengths
of A and a. From the case in which # is an integer we pass,
by the usual reasoning, to that in which it is fractional or in-
commensurable. Vectors, then, in the same direction, have the
same ratio as the corresponding lengths.
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If AB = a be assumed as the unit vector, then
AF = Ma,

in which m is a positive numerical quantity and is called the
Tensor. It is the ratio of the length of the vector ma to that
of the unit vector @, or the numerical factor by which the unit
vector is multiplied to produce the given vector.

Any vector, as 3, may be written in general notation

B=TRTB.

In this notation, T8 (read ¢ tensor of B8”) is the numerical
factor which stretches the unit vector so that it shall have the
proper length ; hence its name, tensor. It is, strictly speaking,
an abstract number without sign, but, to distinguish between it
and the negative of algebra, it may be said to be always posi-
tive. TUB (read ‘¢ versor of 87”) is the unit vector having the
direction of 8; the reason for the name versor will appear later.

T and U are also general symbols of operation. Written be-
fore an expression, they denote the operations of taking the
tensor and versor, respectively. Thus, if the length of 8 is n
times that of the unit vector,

T(B)=n,
where T denotes the operation of taking the stretching factor,
i.e. the tensor. 'While

T(B)=TB

indicates the operation of taking the unit vector, that is, of
reducing a vector B to its unit of length without changing its
direction.

8. If Bc (Fig. 5) be any vector, and BA = yBC, then

— BA=AB= — YBC; Fig. 5.

and, in general, if BA and Bc be B c A
any two real vectors, parallel and '

of unequal length, we may always conceive of a coefficient y
which shall satisfy the equation

BA = YBC,
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where y is plus-or minus, according as the vectors have the same
or opposite directions. y may be called the geometric quotient,
and is a real number, plus or minus, expressing numerically the
ratio of the vector lengths.' This quotient of parallel vectors,
which may be positive or negative, whole, fractional or incom-
mensurable, but which is always real, is called a Scalar, because
it may be always found by the actual comparison of the parallel
vectors with a parallel right line as a scale.

It is to be observed that tensors are pure numbers, or signless
numbers, operating only metrically on the lengths of the vectors
of which they are coefficients: while scalars are sign-bearing
numbers, or the reals of Algebra, and are combined with each
other by the ordinary rules of Algebra; they may be regarded
as the product of tensors and the signs of direction.

Thus, let
a= alUa.

Then Ta=a. If we increase the length of a by the factor b,
b is a tensor, but the tensor of the resulting vector is ba. If we
operate with — b, — b is not a tensor, for a is not only stretched
but also reversed ; the tensor of the resulting vector is as before
ba ; in other words, direction does not enter into the conception
of a tensor. As the product of a sign and a tensor, —b is a
scalar. The operation of taking the scalar terms of an expres-
sion is indicated by the symbol 8. Thus, if ¢ be any real alge-
braic quantity,

S(—baUa+c)=c,
for — baUa is a vector, and the only scalar term in the expres-
sion is c.
9. It is evident from Art. 7 that if a, b, ¢ are scalar coeffi-
cients, and a any vector, we have
(e+b+c)a=aat+batca . . . . (6).
Furthermore, if (Fig. 6)

OA=a, AB=pf, BC=y, O0A'=ma,
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then, A's' being drawn parallel to aB and B'c’ to Bc,

n I~
A'B'=mpB, B'c'=my.

Now
OC=a.+B+7, Fig. 6.
and , 2
oc'=moc=m(a+B+7y). )
(s} 1N
But we have also
OCI=OAI+AIBI+BICI cf
= ma + mf 4 my.
Hence
mGa+B+y)=mat+mB+my . . . (7),

or the distributive law holds good for the multiplication of scalar
and vector quantities.

10. It is clear that while

a—a=0,

a + B cannot be zero, since no amount of transference in a direc-
tion not parallel to a can affect a.
Hence, if
ne 4+ mB =0,

since a and B are entirely independent of each other, we must
have
na=0 and mB=0,
or
n=0 and m=0.
Or, if
ma+nB=m'a+n'B,
then
m=m' and n=n'
.And, in general, if

Sa+38=0, }
then AN )

Sa=0 and 38=0
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Three or more vectors may, however, neutralize each other.

Thus (Fig. 7)
Fle- . at+B+y+8=0,
e—fB—a=0,

and this whether aABCcD be plane or
gauche. In any closed figure, there-
fore, we have

' atB+y+8+ - =0,
where a, B, v, 8, - , are the vector sides in order.

11l. Examples.

1. The right lines joining the extremities of equal and parallel
right lines are equal and parallel.

Fig. 8.
o N Let oa and Bp (Fig. 8) be

V the given lines, and oA = a,
- b4 BO = B, pA = 1y. Then, by
condition, BD = a.
D Now,

BA=BO+OA=f+a;
also, BA=BD+DA=a+7;
or, equating the values of Ba,
Bt+a=a+y. _
Hence (Art. 2), y= 8, and Bo is parallel and equal to pa.

2. The diagonals of a parallelogram bisect each other.

In Fig. 8 we have
. BD=OA=O0P+PA;

also
‘ BD=BP -+ PD;

*. OP+ PA =BP - PD.
But, op and pp being in the same right line,
OP = MPD.

Similarly

PA = nBP.
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Hence
mPD + NBP = PD + BP,

m=1, n=1,
and
OP=PD, BP=PA.

8. If two triangles, having an angle in each equal and the
including sides proportional, be joined at one angle so as to have
their homologous sides parallel, the remaining sides will be in &
straight line. ‘

Let (Fig. 9) AB=1a, AE=g. Then, Nk
by condition, pC = %a, DB = x8.
i M
B=CD+DB=2% (f—a). & . : E
But
BE=f —a.

Hence (Art. 2), B being a common point, cB and BE are one
and the same right line.

4. If two right lines join the alternate extremities of two
parallels, the line joining their centers is half the difference of
the parallels.

We have (Fig. 10) Fig. 10,
Cc D
AB = AD + DC -# CB,
and, also, Ay
AB = AE + EF | FB.
E ¥
Adding
2 AB = (AD '+ AE) + (DC + EF) 4 (CB + FB)
= EF — CD}
or, as lines,

AB=1$% (EF — CD).
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5. The medials of a triangle meet in a point and trisect each
other.
¥ig: 11 Let (Fig. 11) Bo=a, cp=;. Then
0C=a, DA=f.
Now
BA=2a+4+28=2(a+p),

A
E D
‘ 'yl\ and, since op = (a+ 8), BA and oD are
oc parallel.

B Again
BP + PA = BA = 20D = 2 (OP + PD).
But BP and P.D, as also op and pa, lie in the same direction,
and therefore
BP=2PDp and pa=20P.

Hence the medials oA and pB trisect each other.
Draw cp and pE. Then

BP=2PD=$BD =% (2a +f),

cP=CcB+BP=% (2a+8)—2a=% (B—a),
PE=PB+BE=a+8—% (2a+B)=3% (B—a).

Hence pE and cp are in the same straight line, or the medials
meet in a point.

and

6. In any quadrilateral, plane or gauche, the bisectors of
opposite sides bisect each other. .

‘We will first find a value for op (Fig. 12) under the supposi-
tion that p is the middle point of
GE. We shall then find a value for
op, under the supposition that p is
the middle point of ¥a. If these
expressions prove to be identical,
these middle points must coincide.
In this, as in many other problems,
the solution depends upon reaching
the same point by different routes and comparing the results.
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Let oA=a, 0B=p, 0C=7.

1st. 0C + CG = OE + EG.

But
co=}om=14(B—7),
which, in (a), gives

y+3(B—7)=%a+Ec.

.. Ep=4Ee=4(y+B—a),

OP=OE+EP=%a+% (y+B8—0a)
=}(+B+7).

2d. FH — 4 AB=FO + 0A,
or

r—}(B—a)=—ty+a.
.. FP=%FH=*(0.+B—-Y),
or=0F+FP=%y+}(a+B8—7)
=}(e+B8+7),

11

(@

®)

which is identical with (b). Hence, the middle points of rm

and GE coincide.

7. If aBcp (Fig. 18) be any parallelogram, and op any line
parallel to pc, and the indicated lines be drawn, then will Mx

be parallel to AD.

Fig. 13,

Let AM=ga, BM=}.
Then

A0 = Ma,

AD = na + pp,

OD = — ma + na + pP.
‘We have

NM = NO - OM == NP +4- PM,
in which

No =% (— ma + na + pB),
oM=(1—m)a,
Np =2 (— mB + na +pp),
M= (1 —m)p.
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Substituting in the above equation, we obtain, by Art. 10,

Fig. 13,

Substituting this value in

NM = NO + oM,

m=~1%” (—ma +na+pB) + (1 —m)a

_l—m, . _1—m
=— (na'+pB) ==_— 4D,
Hence Ap and Ny are parallel.

8. If, through any point in a parallelogram, lines be drawn
parallel to the sides, the diagonals of the two mnon-adjacent

parallelograms so formed will intersect on the diagonal of the
original parallelogram.

Fig. 4. Let (Fig. 14) oA=ga, 0B= .
¢ Then orR=ma, OE=nf.
‘We have

RD=RO+-0E+ ED=n8+ (1—m) a,
ES =EO+OR+RS =ma+ (1—n) 8.

Also

FO =FR + RO = 28D + RO= & [n8 + (1 — m) a] — ma, (a)

and FO=TFE+EO=YyES +EO=Y [ma+ (1 —n) 8] —nB. (b)
From (a) and (b)
ne=y((1l—n)—n and «(1—m)—m=ym.
Eliminating y
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Substituting this value of z in (a)

m

mn
“T"m—n Bt

or, o and oc = (8 + a) are in the same straight line.

9. If, in any triangle oas (Fig. 15), a line op be drawn to
the middle point of AB, and be produced to any point, as ¥, and
the sides of the triangle be produced to meet A¥ and BF in H and
R, then will HR be parallel to AB.

Let 0A =a, oB=p. Then OB = Za,

oH=Yyp, sB=Lf —a. Flg. 15.

Now o B H

D
op=0A+4aB=14% (e +B).

Also, oF =2 (a4 ), that is, some * 4
multiple of op.

Then, 1st.

BR = pBF,

—B+aa=p (—p-+or)
=p[—B+z@+A)];

©z=pz and —1=pz—p. (a)
Eliminating z
p=z+1.
And, 2d.
AH = ¢AF,
—a+yB=q (—a+o0F)
=q[—a+z(a+p)];
o y=¢qz and —~l=¢qz—q. )
Eliminating 2

g=y+1.
From (a) and (b)

z=‘f="!,
p 9
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and, since p=x+1 and ¢g=y+1,

Fig. 1. z=y and p=gq.
o B ¥ . RH=RO+OH=YyB —za=2(B —a)
D = AB,
A or, rH and AB are parallel.
4

10. If any line pr (Fig. 16) be drawn, cutting the two sides
of any triangle ABc, and be produced to meet the third side in Q,
then

Fig. 16. PC o+ BQ « RA=CR + AQ . BP.
c
Let Bp =a, cR= 8. Then PCc = pa,
P B RA=17f and BA=BC+ca=(1+p)a
a R +(1+’l‘)ﬁ.
‘We have
B A @ aq=aBa=2[(1+p)a+(1+7)8],

as also
AQ=ar+RQ=—18+yrR=—1B8+y (pa+ f).
cox(l+p)=yp and z2(1+7)=—r+y.

Eliminating y

z=(1+2)pr;
whence

AQ_BQ PC RA

BA BA BP CR
or

PC+«BQ+«RA=CR.AQ. BP.

11. If triangles are equiangular, the sides about the equal
angles are proportional.

Let (Fig. 17) Bc =4a, cA=fB. Then BE = ma, ED = nf,
. BD =ma + nf and BA=a + B.

Now
BD = pBA,

ma + nB =p (a + B).

m=p, n=p and m=n.
.« BE:BC::ED:CA.

‘Whence
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12. If, through any point o (Fig. 17), within a triangle aBc,
lines be drawn parallel to the sides, then will

ED GF  HI Fig. 11

— 4 —=2.

CA B ' aB
Let cA=p8, cB=4a. Then A=
a—fB, ED=mB, Qi =p (a — B) and
GF = na.

‘We have
CO = CG 4 GO = CH + HO. (@)
Now, as lines,
GF  GA
—_—=—=n e CG=CA—GA= (1— .
os —ca , A — G a—-=)B
E—B=§B=m, .. GO=CE =CB — EB=(l—m) a.
CB CaA
DB DE
= =m +*« HO = AD = AB — =(1— —B).
2w, 0 B — DB =(1—m) (a— )

Substituting in (@)
A—=n)B+(1—-m)a=pB+(1—m)(a—p),

or (Art. 10) nt b p=2.

12. Complanar vectors are those which lie in, or parallel to,
the same plane. If a, B, y are any vectors in space, they are
complanar when equal vectors, drawn from a common origin,
lie in the same plane.

If a, B, y are complanar, but not parallel, a triangle can al-
ways be constructed, having its sides parallel to and some mul-
tiple of @, B3, y, us aa, b8, ¢cy. If we go round the sides of the
triangle in order, we have

If e, B, y are not complanar, conceive a plane parallel to
two of them, as a and 8. In this plane two lines may be drawn
parallel to and some multiple of « and 8, as aa and b8; and
these two vectors may be represented by pd (Art. 3).
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Now pd, being in the same plane with aa and b8, cannot
therefore be equal to y, or to any multiple of it; pd and y can-
not therefore (Art. 10) neutralize each other. Hence

P+ cy=aa+b8+cy cannot be zero.
I, then, we have the relation
aa+b8+cy=0

between non-parallel vectors, they are complanar; or, if a, B, y
be not complanar, and the above relation be true, then, also,

a=0, b=0, c¢=0.

13. Co-initial wectors are those which denote transference
Jrom the same point.

(a). If three co-initial vectors are complanar, and give the

relatio
1oms (a) aa+b}3+07=0} S
®) a4+b+c¢c=0 ’

they will terminate in a straight line.

For, let oA =a (Fig. 15),0B=8,0p=y. Then paA=a—1y,
BA=a—f.

From Equation (9), (b)

(e+bd+c)a=0,
. from which, subtracting (a) of Equation (9),
b (a—ﬂ)+c(a_7)=01
bBA + cDA = 0;

and, since these two vectors neutralize each other, and have a
common point, they are on the same straight line. Hence,
A, D and B are in the same straight line.

(b). Conversely, if a, B, y are co-initial, complanar and ter-
minate in the same straight line, and a, b, ¢ have such wvalues

as to render o+ b8 + oy = 0,
then will a+b+c=0.
For

PA=a—y and BaA=a—p,
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But, by condition,
a—B=2(a— 7

Q—-2)a—B+2zy=0,
l—2)—14+2=0.

or

in which

14. Examples.

1. The extremities of the adjacent sides of a parallelogram
and the middle point of the diagonal between them lie in the same

straight line. Fig. 15.

Let oA = e, 0B =8, oc = y. A D

Then M
OD = OB + BD, ]
2y—B—a=0. o

But,s.lso, 2__1_1=0’
hence, B, ¢ and A are in the same straight line (Art. 13).

2. If two triangles, aBc and sMn (Fig. 19), are so situated
that lines joining corresponding angles meet in a point, as o,
then the pairs of corresponding sides produced will meet in three
points, P, Q, R, which lie in the same straight line.

Fig. 19,

Let oA=a, 0B=f, oc=1.
Then 08 = ma, oM = nf,
ON = py, BA=a — f3,
M8 = ma — nf,
BR = 2 (a — ) and
MR = y (ma — nf).

1st. BM = BR — MR,

or
nB—B=2 (e —p) —y (ma—np),
cen—1=—x4yn, x—my=0.

Eliminating y m(n—1)

m-—n
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Also \
m (n—1
OR=0B+BR=f +% (a — B) =ﬁ_.ﬁ (e — B),
whence —1)8 — —1
0R=n(m )z—zz(n ) e (@)
2d. CN = CP — NP,
or
py—y=v(B—y)—w(nB—py).
oo p—1= —v 4 wp, v—wn=0.
Eliminating w n(p—1)
Also ST Ta—p
n(p—1
OP=OC+CP=7+'U(B-—-Y)=7_%ﬁ_)(ﬁ_.y)’
whence
p(rn—l)y—n(@—-1B
OP = n—p (b)
8d. In the same manner, we obtain
—1)a— —1
0Q=m(p )a—p(m )y (c)

p—m

From (a), (b) and (c) we observe that, clearing of fractions,
and multiplying (@) by p —1, () by m —1, (¢) by » — 1, and
adding the three resulting equations, member by member, the
collected coefficients of a, B, y, in the second member of the
final equation, are separately equal to zero. Hence the first
member

OrR (m—n)(p —1)+ op (n—p) (m —1) + 0@ (p—m) (n —1)=0.
But

(m—n) (p—1) + (n—p) (m—1) + (p — m) (n —1) = 0.

Hence, R, P and Q are in the same straight line.
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8. Given the relation
aa + b8 4+ cy=0.

Then a, B, y are complanar; but, if co-initial (as they may
be made to be, since a vector is not changed by motion parallel
to itself, 7.e. by translation
without rotation), and a 4-
b + ¢ is not zero, they do
not terminate in a straight
line. Hence, if o is the ori-
gin, and A, B, c, their ter-
minal points, A, B and ¢
are not collinear. Let these
points be joined, forming
the triangle aBc (Fig. 20),
and oa, 0B, oc prolonged to
meet the sides in a! B! ¢! To find the relation between the
segments of the sides, let

Fig. 20.

oAl=d'=2a, OB'=f'=yBR, od=y'=2y,
whence
!
a= 5, B o= g: y=

8

Substituting these in succession in the given relation,

o+ B+ oy =0,
CW-+2!/B’+CY=O7

aa + BB+ /=0,
\

whence, since A} ¢, B are to be collinear,

2tb4c=0,
X
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and, for a like reason,

a+§+c=0,
a+b+§=&
‘Whence
- =0 -
= b+c y= a+c # at+d
and
e @ = — b =__¢
= b+ca’ B’ a+cﬁ’ 4 a+by’
or, from the given relation,
Moy g oytaa o aat DB
b+c’ c+a’ LA
‘Whence
b(d—B)=c(y—2d),
c(B—y)=a(—p),
a(y—a)=0(@B—79),
and
m'_o o _a  ad_b
Ac ¥ B2 ¢ cB a

or, multiplying,

BA'. cB'. AC'. = A'c . B'A . C'B.

4. If o (Fig. 20) be any point, and ABC any triangle, the
transversals through o and the vertices divide the sides into seg-

ments having the relation

/.

BA'. 0B'. AC'. = A'c . B'A . O'B.

Let A'c=a, BC=0a, CB'=B, cA=0B. Then BA=aa+ bB.

Also let |

BO = ¥BB, 0A = yA'a, BC’= MmBA, oc¢’'= zco.
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Then N
BO = BB’ = 2 (BC 4 CB') =2 (aa +B),
oa=yaA'aA=y(a'c+ca) =y (a+BB),

BC'= mBA = m (aa + bB),
cc'=2c0 =z(cB+BO)=2[—aa+x(aa+B)].

From the triangle BoA we have

BO+0A+ AB=0,
z (ae+B)+y (a+bB)— b8 —aa=0.
. za4+y—a=0, z4yb—b=0.

b(1—=a)
=

Eliminating y z
From the triangle Bcc’
BC+cc'+¢'B=0,
ao+2[—aa+ 2 (aa+ B)]—m (aa+bB)=0,

whence, as usual, and substituting the above w}alue of z,

_ b(1—a) _1—a
l=m=z2—29"% ™=t
or
l1—m _1—b
m  1—a

Substituting for m, b and a,

c'A  aB' ca'
CA_AB G4
B¢ B'c  A'B

which is the required relation.

5. If (Fig. 20) lines be
drawn through A) B, ¢} and
produced to meet the opposite
sides of the triangle in P, Q,
R, then are p, @ and R col-
linear.
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With the notation of the last example,

BC'=mBA = m (aa+ bB).

1st. From the triangle ¢'Ba’
c'A'=c'B4BA'
=——2=1 _(4aqbB)+(@@—1)a

+b 2
._.___ b—2)a—
| g6 —2)a—0g].

Also

AR= wCA——Ac—{-ca A'c—ypB,

2t [(0—2)a—bf]=a—yB,

_ b
'y—b——2’

and BR=Bc+ca=aa—-ﬁ,B. (@)

2d. From the triangle c¢’as’
¢'B'=¢'A + a¥’
= (1= m) ot )+ (1= D)

= 515 [ —(a—2) ).

BQ-a:CB—-Bc+cq-—Bc+ya,

o=l [aa— (@ —2) (]=— B+,

and —
BQ=BC+CQ=(a+y)a=%la. ®

3d. A'p=zA'8'=2 (a + B),
A'P=4A'B+BP=(1—0a)a+y (aa+bB),

R et
YELTY
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and

nr = yoa = 2= (aa + 8). ©

Multiplying the second members of (a), (b), (c), by (a—1)
b—2),— (a—2) (b —1),(a—b) respectively, their sum is
zero. Hence

(a—1)(b—2)BR— (2 —2)(b—1)Be+ (¢ —b)BP=0.

But
(a-=1)(d—-2)—(a—2)(b—1)+(a—=0)=0.

Hence R, Q and P are collinear.

"6. If pc (Fig. 20) and po be produced to meet AA' and BC,
then T and s are collinear with ¢! A similar proposition would
obtain for ¢ and r.

‘With the following notation,

BA=uaq, BA'= g, BB'= aa + b3,
we have
BO = BA + AB'+4 B0 = BA'4 A0,

a+b8—(1—a)a+a(aa+b8) =8 +y(a—f).

coy=-2

a+?b

BO =
also
BP =BA'+ A'P =BA +4 AP;

B+z[aa+ (b—1)B]=a+wa,

v w=0z1+b

and

BC == BA/4 A/C = BA + AC,
B+vB=a+u[(1—a)e—2>8],



24 QUATERNIONS,

U_a+b—1’
l—a
= 08
Bc—-lT__a.

* Now to find Bs, B¢/ and BT, We have

. 1st.
BS = 2'BA'= BP 4 ¥'PO,
o = —#,
1—-2b—a
BS=—‘_bB .
1—-2b—a
2d.
BC' = v'BA = BC + ucCoO,
. v’=_’a_,
2a+b—1

Bo'=——% |
2a+b-—1

3d. BT = BA'4 A'T=BA'+ 2'A’0 = BP 4 w'PC,
2'= m
a—0b
—bB—aa
Br=—

Clearing of fractions and adding

(1—2b—a)Bs+(2a+4+b—1)Bc'+ (b—a)Br=0,

as also .
(1—2b—a)+(2a+b—l)+(b_——a)=0.

Hence s, ¢’ and T are collinear.

15. A medial vector is one drawn from the origin of two co-
initial vectors to the middle point of the line joining their
extremities.
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Thus (Fig. 21), if p is the middle point of aB, oP is a medial
vector. To find an expression for it, let 0A =a, 0B =8, then

OP == OA - AP = a 4 AP,

OP = OB + BP =8 — AP,
or, adding,

op=“2/3 A ()

The signs in this expression will, of course, depend upon the
original assumptions. Thus, if A0 =g,

OP =—a -+ AP = 8 — AP,

. OP=B_—(_1.

16. An Angle-Bisector is a line which bisects an angle.
To find an expression for an angle-bi-
sector as a vector, let oE=a (Fig. 21) “g-‘“'
and oF = f8 be unit vectors along oa and
oB. Complete the rhombus oepr. Since
the diagonal of a rhombus bisects the
angle, oo is a multiple of or. Now op
=a+4 ’3 , hence

or=z(a+B) . . (11). a4 P B

In this expression op is of any length and x is indeterminate.
If op is limited, as by the line aB, then

A =2(a+ f) — da,

AP = yAB = y(bf — aa), (@)
o z(a+ B)—aa=y(bB — aa),
or
x—a=—ya and z=yb.
Eliminating =
_a
y_a+U

Substituting in (a)
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17. Examples.

1. If parallelograms, whose sides are parallel to two given
lines, be described upon each, of the sides of a triangle as diago-
nals, the other diagonals will intersect in a point.

Let aBc (Fig. 22) be the given tri-
Fig. 22.

Al . o  angle. Let the diagonals B'F and a'p
intersect in P, and suppose Ok to meet
G A'D in some point as ¢/
‘ /e Let 0oA=a, 0B'= 8, whence oa'=
! F ®  ma, oB=ng.
DT Now
BP -DP=a. (a)
v D B! But
BP=yB'Q=y.4 (B'c+B'B) (Art. 15)

= 4y [ma+(n—1) 8-

DP=2DH=12.% (DC+cA')
=4 [(m—1)a—g].
Substituting in (a), we obtain, as usual,

And

Z2= _2_(1—~Q_.
14+mn—n
Again
oP'—pP'=a+ 8. )
But
OP'= 206 =2 .} (0A + 0OB)
=4z (a+np).
Substituting in () this value of op' and pp'= vpH, we obtain
as before, 2 (1—n)
V==
14+mn—n

Or, vpH = 2pH =DP'=DP. Hence, P and P’ coincide, and
the three diagonals meet in a point.

2. A triangle can always be constructed whose sides are equal
and parallel to. the medials of any triangle.
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In Fig. 23 we have
AA'= AB + BA'= AB + §BC.
BB'= BC + #CA.
cC'=cA + $aB. ’
.. AA'+ BB+ 0C'= §(AB + BC 4 cA)= 0. (Art. 10).

8. The angle-bisectors of a triangle meet in a point.

Let a, 8, y be unit vectors along Bc,
ac, aB (Fig. 28).
Then (Art. 16)

ar=2(y+B),
BP=¥ (a — 7). (a)

BC = AC — AB,

aa=bB—cy ) A

where a, b, ¢ are the lengths of the sides.
Substituting e from (b) in (a)

b8 —
L
‘We have also
cp=Ar—ac=2z (y+ 8)— b, (c)

Now

bG —
CP=BP+CB=y(Baw—7)+cy—b,B.
z=—%c—y+c, w—b=%b_b,
Eliminating y cb
_a+b+c'

Substituting in (c)
w=—2 — (y+5)— 8

a,+b+c

a+b+c[“7 (@+0)8]
_a+b+c(_a'm a8)
=p (a+B).

Hence (Art. 16) cp is an angle-bisector.
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18. The Mean Point of any polygon is that to which the
vector is the mean of the vectors to the angles.

Hence, to find the mean point, add the vectors to the angles
and divide by the number of the angles. Thus, if a, ay ag ...
be the vectors to the angles, the vector to the mean point is

a+atagt..ta,
a= - <. (13),

where n is the number of the angles.

The mean point of a polyedron is similarly defined. It co-
incides in either case, as will appear later, with the center of
gravity of a system of equal particles situated at the vertices
of the polygon or polyedron.

19. Examples.

1. The mean point of a tetraedron is the mean point of the
tetraedron formed by joining the mean points of the fuces.

Let (Fig. 24) oA=a, 0B=f, oc=
vy. The vectors from o to the mean
points of the faces are

i(a+B+7y),
&(“""7)9
1(a+p),
1 (y+A8),

and that to the mean point of the tetraedron formed by joining
them is

iI:a+§+7+agﬁ+a§7+7-;p]=t(“""B'*'Y)’

Fig. 4.
C

which is the vector to the mean point of oasc.
The same is true of the tetraedron formed by joining the mean
points of the edges AB, BC and cA with o, since

i[“;ﬁ+ﬁ‘2”+““;"’ =t @+B+)




GEOMETRIC ADDITION AND SUBTRACTION. 29

The above is, of course, independent of the origin, and would
be true were o not taken at one of the vertices.

2. The intersection of the bisectors of the sides of a quadri-
lateral is the mean point.

Let (Fig.25) oA=4a,0B=f, 0C=1,
op=3, or=p. Then (Art. 15) o c
p=} (or +ox) @
=+ [ (a+9) +1(y+A)]
=i@+B+y+39).

If ois at A, then 0A=a =0, and
p=1(B+7v+9).

8. If thesides (in order) of a quadrilateral be divided propor-
tionately, and a new quadrilateral formed by joining the points
of division, then will both quadrilaterals have the same mean
point.

Let a, B8, y, & be the vectors to the vertices of the given
quadrilateral, from any initial point o.

Then, for the vector to the mean point, we have

Fe+B+y+d).

If m be the given ratio, and ] B} v} &' the vectors to the ver-
tices of the second quadrilateral, then

d=a+m(B—a)=(1—m)a+mB,
B'=(1—m) B+ my,

Y =(Q1—m)y+ ms,
3’=a+(1—m)(3—a)=8—m(8—a);

P+ Y+8+d)=}(a+B+7+39).

whence
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4. In any quadrilateral, plane or gauche, the middle point
of the bisector of the diagonals is the mean point.

Let (Fig. 26) 0oA=4a,0B=f, oc=1, 08 =4y.

Fig. 2. c Then (Art. 15)
op =} (0Q + 0s)
=33 (a+8) +1v]
=%(e+B+7y).

5. If the two opposite sides of a quadriluteral be divided pro-
portionately, and the points of division joined, the mean points
of the three quadrilaterals will lie in the same straight line.

Let ¢} A’ (Fig. 27) be the points
of division, and m the given ratio.
Then, if oA =a, BC=17, OA'=ma,
c'c=my, AB=f and o is the in-
itial point, the vectors to the mean
points p, ¢} p" are

or =4%(Ba+28+7),
oF =3[(m+2)a+28+(2—m)y],
o' =3[(m+38)e+2B+(1—m)y];

Therefore, P, p/- P are in the same straight line.

20. Hxercises.

1. The diagonals of a parallelopiped bisect each other.

2. In Fig. 58, show that Be and cH are parallel.

8. If the adjacent sides of a quadrilateral be divided propor.
tionately, the line joining the points of division is parallel to the
diagonal joining their extremities.
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4. The medial to the base of an isosceles triangle is an angle-
bisector.

5. In any right-angled triangle aBc (Fig. 58), the lines Bk,
CF, AL meet in a point.

6. Any angle-bisector of a triangle divides the opposite side
into segments proportional to the other two sides.

7. The line joining the middle point of the side of any paral-
lelogram with one of its opposite angles, and the diagonal which
it intersects, trisect each other.

8. If the middle points of the sides of any quadrilateral be
joined in succession, the resulting figure will be a parallelogram
with the same mean point.

9. The intersections of the bisectors of the exterior angles
of any triangle with the opposite sides are in the same straight
line.

10. If AB be the common base of two triangles whose vertices
are ¢ and b, and lines be drawn from any point E of the base
parallel to Ap and Ac intersecting Bp and BC in ¥ and @, then is
FG parallel to pc.



CHAPTER II

Multiplication and Division of Vectors, or Geometric Multipli-
cation and Division.

2l. Elements of a Quaternion.
The quotient of two vectors is called a Quaternion.
We are now to see what is meant by the quotient of two
vectors, and what are its elements.
Let o and B' (Fig. 28) be two vec-

Fig. 28. R tors drawn from o and o' respectively
and not lying in the same plane ; and
@ let their quotient be designated in the
a
o¢ B usual way by —El
\ ‘Whatever their relative positions, we

o\'\_—’zg/_""B’ may always conceive that one of these
vectors, as 3; may be moved parallel

to itself so that the point o’ shall move over the line o'o to o.
The vectors will then lie in the same plane. Since neither the
length or direction of B’ has been changed during this parallel
motion, we have 8= B and the quotient of any two vectors, a,
B; will be the same as that of two equal co-initial vectors, as a

and 8. We are then to determine the ratio g, in which a and 8

lie in the same plane and have a common origin o.

‘Whatever the nature of this quotient, we are to regard it as
some factor which operating on the divisor produces the dividend,
i.e. causes B to coincide with « in direction and length, so that
if this quotient be g, we shall have, by definition,

gB=a when

- E=q. e o o o (14).
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If at the point o' we suppose a vector o'c=1y to be drawn,
not parallel to the plane AoB, and that this vector be moved as
before, so that o’ falls at o, the plane which, after this motion,
v will determine with a, will differ from the plane of « and S, so
that if the quotient

a
;—9’:

g and ¢' will differ because their planes differ. Hence we con-
clude that ti® quotients ¢ and ¢' cannot be the same if a, 8 and
v are not parallel to one plane, and therefore that the position
of the plane of a and 8 must enter into our conception of the
quotient gq.

Again, if y be a vector o'c, parallel to the plane Ao, but
differing as a vector from 8} then when movéd, as before, into
the plane aoB, it will make with o an angle other than Boa.
Hence the angle between a and 8 must also enter into our con-
ception of gq. This is not only true as regards the magnitude of
the angle, but also its direction. If, for example, y have such a
direction that, when moved into the plane AoB, it lies on the
other side of a, so that Aoc on the left of « is equal to 0B, then

the quotient ¢ of Z, in operating on v to produce a must turn y
Y
in a direction opposite to that in which ¢ = E turns B to produce

a. Therefore ¢ and ¢' will differ unless the angles between the
vector dividend and divisor are in each the same, both as regards
magnitude and direction of rotation. Of the two angles through
which one vector may be turned so as to coincide with the other
is meant the lesser, and it will therefore, generally, be < 180°

Finally, if the lengths of 8 and y differ, then §= g will still
differ from 2 =g' Therefore the ratio of the lengths of the vec-

Y
tors must also enter into the conception of g.
We have thus found the quotient g, regarded as an operator
which changes 8 into a, to depend upon the plane of the vectors,
the angle between them and the ratio of their lengths. Since
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two angles are requisite to fix a plane, it is evident that ¢
depends upon four elements, and performs two distinct opera-
tions :
1st. A stretching (or shortening) of 8, so as to make it of
the same length as a
2d. A turning of 8, so as to cause it to coincide with a in
direction,
the order of these two operations being a matter of indiffer-
ence. .
Of the four elements, the turning operation depends upon
three ; two angles to fix the plane of rotation, and one angle to
fix the amount of rotation in that
Fig. 28. plane. The stretching operation de-
pends only upon the remaining one,
(1 i.e., upon the ratio of the vector
8 lengths. As depending upon four
¢ B elements we observe one reason for
\ calling ¢ a quaternion. The two ope-
o ¥ rations of which g is the symbol being
entirely independent of each other, a
quaternion is a complex quantity, decomposable, as will be
seen, into two factors, one of which stretches or shortens the
vector divisor so that its length shall equal that of the vector
dividend, and is a signless number called the Tensor of the
quaternion ; the other turns the vector divisor so that it shall
coincide with the vector dividend, and is therefore called the
Versor-of the quaternion. These factors are symbolically repre-
sented by Tg and Ug, read *‘ tensor of ¢” and *‘versor of g,”
and ¢ may be written )

qg=Tq . Ug.

22. An equality between two quaternions may be defined di-
rectly from the foregoing considerations.

If the plane of « and 8 be moved parallel to itself; or if the
angle aoB (Fig. 28), remaining constant in magnitude and esti-
mated in the same direction, be rotated about an axis through o
perpendicular to the plane ; or the absolute lengths of o« and B8

’
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vary so that their ratio remains constant, ¢ will remain the same.
Hence if a o
=1 and g
when 7=

1st. The vector lengths are in the same ratio, and

2d. The vectors are in the same or parallel planes, and

8d. The vectors make with each other the same angle both as
to magnitude and direction.

The plane of the vectors and the angle between them are
called, respectively, the plane and angle of the quaternion, and

then will

the expression =, a geometric fraction or quotient. It is to be

observed that ¢ has been regarded as the operator on 8, produc-
ing a. This must be constantly borne in mind, for it will sub-
sequently appear that if we write g8 = a to express the operation
by which g converts 8 into a, g8 and Bg will not in general be
equal.

23. Since g, in operating upon 8 to produce a, must not only
turn B through a definite angle but also in a definite direction,
some convention defining positive and negative rotation with
reference to an axis is necessary.

By positive rotation with reference to an axis is meant lefi-
handed rotation when the direction of the axis is from the plane
of rotation towards the eye of a person who stands on the axis
facing the plane of rotation.

[If the direction of the axis is regarded as from the eye
towards the plane of rotation, positive rotation is righthanded.
Thus, in facing the dial of a watch, the motion of the hands is
positive rotation relatively to an axis from the eye towards the
dial. For an axis pointing from the dial to the eye, the motion
of the hands is negative rotation. Or again, the rotation of the
earth from west to east is negative relative to an axis from north
to south, but positive relative to an axis from south to north.]

On the above assumption, if a person stand on the axis, fac-
ing the positive direction of rotation, the positive direction of
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the axis will always be from the place where he stands towards
the left.

If i, k, j (Fig. 81) be three axes at right angles to each other,
with directions as indicated in the
figure, then positive rotation is from %
to j, from j to k&, and from % to ¢, rela-
tively to the axes k, 7, j respectively.
A precisely opposite assumption would
be equally proper. The above is in
accordance with the usual method of
estimating positive angles in Trigo-
nometry and Mechanics.

Fig. 31 (bis).

24. Let oa and oB (Fig. 29) be any
two co-initial vectors whose lengths are a and b, « and 8 being

unit vectors along oA and oB, so that
OA = da,

Fig. 2. oB = bf.

Let the angle Boa between the

@ ¢ vectors be represented by ¢; also

o g draw ap perpendicular to os, and
/S » B let the unit vector along pa be é.
/e The tensor of op is evidently

acos ¢ and that of pa asing. If
we assume that, as in Algebra, geometrical quotients which
have a common divisor are added and subtracted by adding and
subtracting the numerators over the common denominator, so
that

giz=aiy
" then, since FB A
OA = OD + DA,
we have
OA_OD4DA_ OD DA
OB OB 0B ' OB
_acosp.B asing.d
T b.8 b.B
_g(cosqs.B_'_sind;.S
b\ B B )
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We have already defined (Art. 8) the quotient of two parallel
vectors as a scalar, and in the first term of the parenthesis, 8

being a unit vector, g =1, and
oA a .
a=.5(cosgl:+sm¢.lg). (a)

The last term coptains the quotientl—;8 of two unit vectors at

right angles to each other. This quotient is to be regarded, as
before, as a factor which, operating on the divisor 8, produces
8, i.e., turns B left-handed through an angle of 90°; and this
quotient must designate the plane of rotation and the direction
of rotation. If we define the effect of any unit vector, operating
as a multiplier upon another at right angles to it, to be the turn-
ing of the latter in a positive direction through an angle of 90°
in a plane perpendicular to the operator, then the unit vector e,
drawn from o perpendicular to the plane of § and 8, and in the
direction indicated in the figure, will be the factor which oper-
ating on 8 produces 8, and

f=38 or %:e.

The unit vector ¢, a8 an axis, determines the plane of rotation ;
its direction determines the direction of rotation, and by defini-
tion its rotating effect extends through an angle of 90°; as a
quotient, therefore, it completely determines the operator which
changes B into 8. Equation (a) thus becomes

%:%(co&¢+esin¢),

or, if oa and or be themselves denoted by a and 8, and the ten-
sors of a and 8 by Tz and T8,

= Ta e si coe e
q—TB(OOS¢+ sin ¢) (15),
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in which :—; is the tensor of g, being the ratio of the vector
lengths, and cos ¢ + € sin ¢ is the versor of g, its plane, deter-
mined by the axis ¢, and angle ¢ being the plane and angle of
the quaternion.

‘When a and B are of the same length, or Ta=T, Tq=%=1,

and the effect of ¢ as a factor, or operator, is simply one of
version. .

Like T, the symbol U is one of operation, indicating the oper-
ation of taking the versor, so that

. Ug=cos ¢+ € sin .

This operation takes into account but one of the two distinct
acts which we have seen the quotient ¢ must perform, as an
agent converting B8 into a, namely, the act of version; it thus
eliminates the quantitative element of length. In this respect it
is similar to the reduction of a vec-
tor to its unit of length, an opera-
tion which also eliminates this same

@ s element of length, and has been

o 5 designated by the same symbol U.
g ‘When a and 8 are at right angles
A to each other, ¢ =907 and the ver-
! sor cos¢ + esing reduces to the
unit vector ¢, which has been de-
fined, as an operator, to be a versor turning a line at right
angles to it through an angle 90° Any vector, therefore, as a,
contains, in its unit vector in the same direction, a versor
element or factor of which Ua is the symbol, U indicating the
reduction of o to its unit of length or the taking of its versor

factor. Hence the appellation versor of a (Art. 7).

If in Equation (15) the vectors be reduced to the unit of

length,

Fig. 29.

Ug B




GEOMETRIC MULTIPLICATION AND DIVISION. 89

25. We may now express the relation
a Ta

E:;p(cos¢+.€sin¢)=q (Eq. 15)
in the symbolic notation
or B B BY. .. ... (@(e),
q=Tq.Uq

and say that the quotient of two vectors is the product of a tensor
and a versor; and that

1st. The tensor of the quotient, (T_“), is the ratio of their
tensors; A

2d. The versor of the quotient, (cos ¢ + e 8in ¢), is the cosine
of the contained angle plus the product of its sine and a unit
vector, at right angles to their plane and such that the rotation
which causes the divisor to coincide in direction with the dividend
shall be positive.

26. If, for ; = q, we write B— ¢! it is evident that ¢' differs
a

from ¢ both in the act of tension and ver-
sion ; the tensor of ¢' being the reciprocal
of the tensor of ¢, and the unit vector e,
while still parallel to its former position,
is reversed in direction (Art. 23) since
the direction of rotation is reversed (Fig.
30). Hence

§=%§(cos¢-—zsin¢) ... .oan.

a
positive direction of ¢ is a matter of choice. It is only neces-

B is called the reciprocal of ; As already remarked, the

sary that if we have + ¢ in U%, we must have — e in U@, or
a

conversely.
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27. Let <, j, k (Fig. 81) represent unit vectors at right angles

to each other. The effect of any unit vector acting as a multi-

plier upon another at right angles to it,

Fg. 81. has been defined (Art. 24) to be the

j turning of the latter in a positive direc-

tion in a plane perpendicular to the ope-

rator or multiplier through an angle of

90° Thus, ¢ opérating on j produces k.

This operation is called multiplica-

tion, and the result the product, and is
expressed as usual

G=k . « « . . . . (18).

The quotient of two vectors being a factor which converts
the divisor into the dividend, we have also

==t . ¢« .« . . (19,

either the product or quotient of two unit vectors at right angles to
each other being a unit vector perpendicular to their plane.

This multiplication is evidently not that of algebra; it is a
revolution, which for rectangular vectors extends through 90°
Nor is k in Equation (18) a numerical product, nor ¢ in Equa-
tion (19) a numerical quotient. This kind of multiplication and
division is called geometric.

In accordance with the above definition we may write the fol-
lowing equations :

=k ki)
Jj
Jk=1i i:j
s J_.
ki=j 7—7%. . . . (20).
" —k
=k —==j
Ji =
=—i =k
J )
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ih=—j fk_j.=z\
o —k_ .
1({— =—'k —_—=1
(=) =
i(—k)=j J_k=i
k(—i)=—j __-::=k} .o e . (20).
kE(=j)=1t -L.;=k
(=9 =y
J(=k)=—1 :_]:=j
—-N=k —_—
{( ) =

7

Since the effect of i, &, j as operators is to turn a line from one
direction into another which differs from it by 905 they are
called quadrantal versors.

28. Since .
tXj=k and iXk=—j=-—1XJ,
we have
IXiXj=—1xXj,
or
iXt=—1.

‘We may denote the continued use of ¢ as an operator by an
exponent which indicates the number of times it is so used.
This is consistent with the meaning of an exponent in algebraic
notation. In both cases it demotes the number of times the
operator is used, in one instance as a numerical factor, in the
other as a versor. Thus

P=—1. . . . . .. (21),
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and in a similar manner,

;::i} C e e e e . (20).

Hence the square of a unit vector is — 1.

The meaning of the word ‘¢ square ” is more general than that
which it possesses in Algebra, as was that of the word ¢ product”
in Art. 27. The propriety of this ex-
tension of meaning lies in the fact that
J for certain special cases, the processes

above defined reduce to the usual alge-

braic processes to which these terms

’ were originally restricted. The conclu-

z sion ¢2=—1 is seen to follow directly

from the definition, since if ¢ operates

twice in succession on either + j or + %,

% it turns the vector, in either case suc-

cessively through two right angles, so

that after the operation it points in the opposite direction. A

similar reversal would have resulted if the minus sign had been

written before the vector. Thus —(xj)=Fj. Hence ¢ X i,

or i2, as an operator, has the effect of the minus sign in revers-
ing the direction of a line.

Fig. 81.

29. It is to be observed that so long as the cyclical order i, j,
k, i, j, k, %, .... is maintained, the product of any two of these
three vectors gives the third ; thus

=k, jk=1i, ki=j;
and therefore
@Ge=kk=1=—1,
(Jh)i= i = *=—1,
(hi)j = 4j = =1}
1(Jk) = it = =1,

J(k)= jj = j*=—1,
k() =kk=1=—1,

as also
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hence
i(Jk) = (H)k,
3= G,
k (i) = (®d) Jy
which involves the Associative law.
‘We may therefore omit the parentheses and write

tk=jgki=Fkij=—1. . . . . (238),

or, the continued product of three rectangular unit vectors i3 the
same so long as the cyclical order is mainiained.

But
k() =k(—k)=—k=1 . . . . (24),

or, a change in the cyclical order reverses the sign of the product.

30. In Equation (24) we have assumed that
k(—k)=—Fkk.

That this is the case appears from the fact that ¢ operating on

— Jj produces — k, or
i(=j)=—"%

and that the same result would be obtained by operating with ¢
on j, producing %, and then reversing k. That is, to turn the
negative, or reverse, of a vector through a right angle, is the
same as turning the vector through a right angle and then re-
versing it. The negative sign 18, therefore, commutative with i,
J» k&, or -
i(—H=—f=—Fk . . . . . (25).

31. It follows directly from the definition of multiplication,
as applied to rectangular unit vectors, that the commutative prop-
erty of algebraic factors does not hold good. For

=k,
bat
Ji=—k.
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Hence, to change the order of the factors is to reverse the sign
of the product. 'The operator is always written first ; and, since
the order cannot be changed without affecting the result, in
reading such an expression as ij = k, this sequence of the factors

must be indicated by saying ¢ ¢ into j
¥ig. 1. equals k” and not ¢‘ 7 multiplied by j
Jj equals %,” the latter not being true.
Hence also the conception of a quo-
tient as a factor requires a similar dis-

y s tinction, which in Algebra is unneces-

£ —->— sary. In the latter, from §=a we

have, indifferently, ab=c¢ and ba=c.

k But from 73c_=i, while ij=Fk is true,

ji=Fk is not true. In expressing therefore the relations be-
tween ¢, j and % by multiplication instead of division, care must
be taken to conform to the definition, the quotient being used
as the multiplier or operator on the divisor. This non-com-
mutative property of rectangular unit vectors, which results
directly from the primary definition of the operation of multipli-
cation, will be seen hereafter to extend to vectors in general
and to quaternions, whose multiplication is not commutative
except in special cases.

The quotient then being a factor which operates on the divisor
to produce the dividend, we have

£j=k,tmmh,j;f;k. ... (26),
J

the cancelling being performed by an upward right-handed stroke.
But I_c =k is not true, for this would involve ji = 4.

32. Tt follows also that the directions of rotation of a fraction,
as I—c_, and its reciprocal are opposite. Thus
J

k_. j__ .
3= %:—z “ e e . (2D,
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and therefore that the reciprocal of the quotient 7 is — 7, or
=—1 . « « « « « . (28);

that is, the reciprocal of a unit vector is the vector reversed. This
may be written
=il=—¢. . . . . . (29),

the exponent denoting that, as a factor or versor, ¢ is used once,
while the minus sign before the exponent indicates a reversal in
the direction of rotation.

33. If a be any unit vector, we obtain from the preceding
Article

al=a(—-a)
=—aa=—a'=1.
But
/1_/(=1,
hence
1a.=o.1. e e . . . . (80),
a a

or, a unit vector and it8 reciprocal are commutative and their
product plus unity.
If a is not a unit vector,

fim———=——Ta . . . . . (81),

the tensor of the reciprocal of a wector being the reciprocal of its
tensor. k
It must be carefully observed that a fraction, a.s , cannot be

written indifferently k- or —Ic for this would involve Icz“ =11k,
which is not true.
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By definition % (—i)=—J, or ki“=k%=— j=7§. Henee,
’-‘f=k% or ki-'. From the meaning attached to the ordinary
1

notation of algebra, E ok

would appear to be correct; for, cancelling, we have k=Fk.
‘Whereas, since I_c must be written k%, we should have
1

ki [=—iki]= kili[=k]
Al=—K]=t,

or

which is not true. Of course that equation (a) is false is
directly evident from the fact that

§= —Jj,and (a) involvesi (—j) = (—j)i

Fig. 81.

or ij=ji. The above, however, shows
that, as cancelling must be performed
by an upward right-handed stroke
when the expression is in the form of
a quotient or fraction, so when ex-
pressed in the form of multiplication,
the cancelled factors must be adjacent.
In such an expression as

)

B R VO
i 7 JiT =y ®

it might be supposed permissible bo write also

—f  —1
A ©

since in either case the correct result is obtained. This arises,
however, from the fact that both the fractions in the first mem-

ber of (b) are equal to k, and therefore may be permuted so as

—'=_1. The process of (¢) is, how-
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ever, illegitimate, and the result is correct, not because the
process is so, but because the factors are in this case commu-
tative.

34. Since the act of tension is independent of that of version,
and their order is immaterial,

T.yj=xy .Y=yx.g=26 . . . (82),

where z and y are any two scalars and 2y =2. Hence the com-
mutative principle applies to tensors. If then a, B8, y are in the
direction of i, j apd k respectively, and a, b, ¢ are their tensors,

aB=TaTB. ij=0ab .k,
ay =TaTy . tk=—ac . j, ete.,

or, the product of any two rectangular vectors is the product of
their tensors and a unit vector at right angles to their plane.
So also

or, the quotient of two rectangular vectors is the quotient of their
tensors times a unit vector at right angles to their plane.

35. If, as above, a =ai, then

aa=ai.ai,
a?=a*i?
al=—a* . . . . . . . (83).

Hence, the square of any vector is minus the square of its tensor.
Since Ta = a is the ratio of the lengths of a and Ua, the square
of any wvector is the square of the corresponding line, regarded as
a length or distance only, with its sign changed.

If gi=aand =4,

aﬂ:abi’:—ab.
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36. That the multiplication of rectangular vectors is a dis-
tributive operation may be seen
Fig. 32. directly from Fig. 82 by ob-

TN T serving that

iG+R)=G+ik (34),

t being perpendicular to and in
front of the plane of the paper.

N,

[N S SN NPT

37. Exercises in the transformations of 7, j, k:

1. j(—i)=*F. 2. j(—k)=
8. k(—j)=1i. 4 k(—i) =
5. —k(j)=1i. 6. (—k)i=
7 (=) =—i. 8. (—j)(—k)=
9. (=N(—9)= 10. (=) (=) =
11. J _=—k. 12. —J/—
—1 1
—k —j
13. =k 14, 2
7 %
s .2
15. == 16. ©—j.
+3
17. L= 18. ©—
i j
19. *__1q, 20. k£
J i
9o1. K _ 92. 1.k
Ji j'i
ik i j ok
23, Y% 24, L 1 2
% PR

25. Is it correct to write, in general, the product of any frac-
tions, as 7—0 . %, in the form ’Qj?
J

26. State whether —T' . f = ——l-c—v is correct or not, and why.

27. i2j2k2=— (k).
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38. Resuming Equation (15),

_a_Te i) ;

the quaternion g was shown (Art. 25) to be the product of a
tensor and a versor. It may also be regarded as the sum of two
parts, the first of which I:%‘B cos ¢:| is a scalar, whose sign is
that of the cosine of the angle (¢) between the vectors, while the
second [%% sing . e] is a vector at right angles to their plane,
whose sign depends upon the direction of rotation of the fraction

a

E. This may be expressed symbolically in the notation

a a a
q B Sﬁ+V'3 e+« « . (85),
so that we have both
¢="TqUq
and
9=8q¢+Yq.

The second member of this last equation is read ¢¢ scalar of ¢
plus vector of g,” Sg and Vg being respectively symbols for the
scalar and vector parts of the quaternion. As already explained
in the case of the symbol 8, V is a symbol of operation, denoting
the operation of taking the vector terms of the expression before
which if is written.

The quotient of two wvectors s, therefore, the sum of a scalar
and o vector.

The scalar of the quotient [Sq:%% cos ¢:| 13 the ratio of the

tensors times the cosine of the contained angle. The tensor of

the vector part .[TVq = %’; sin ¢:| is the ratio of the tensors times
the sine of the contained angle. The wversor of the vector part
[UVg =] is a unit vector perpendicular to their plane, having a
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direction such that the direction of rotation of the divisor i3 posi-
tive or left-handed.

Letting a and b be the tensors of a and 3, and collecting the
preceding expressions for facility of reference, we have

Tg=2 )
=3
Ug=cos ¢ 4 esin ¢
Sg= cos ¢
Vq=g sing . ¢

’l‘Vq=g sin Lo . . (36).

UVg=e¢

SUg=cos ¢

VUg=sind . ¢

TVUg=sin ¢ )

These expressions require no further explanation than that
derived from a simple inspection of Equation (15) in connection
with the meaning already assigned to T, U, S and V as symbols
of operation.

39. De Moivre’s Formula.

The following considerations will explain why the parenthesis
(cos¢ + esing) as a versor turns B left-handed through an
angle ¢. They also contain the quaternion interpretation of
imaginary quantities.

Let v=1sin ¢ and z = cos ¢.

Differentiating,

dv=cos¢ dp, dz=—sin¢ do,

dv = zd¢, (a)
dz = — vdg. ®)

or
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Multiplying (a) by vV —1, and adding the result to (b),
dz4dv o V—1=(—v +2vV=1) dg,

or
dz4dv . V—1=(vV—=1+2)V—1 d¢,
whence
d(z+'v‘\/-—1)_ —
etov—1 =dp . V-1, (¢
which may be written ,
z+vV——1= et
or
cosd+sing « V—1=e*v-1, (@)
whence
cosme + sinmep « V —1=emov-, (e)
But we have from (d)
(cos¢p +singp . V—1)m= emv1, N

and therefore, from (e) and (f),
(cos¢ +sing . V—1)m=cosm¢ + sinme « V—1 (87),

which is the well-known formula of De Moivre.

This formula may be made the basis of a system of analytical
trigonometry. Thus, for example, to deduce the formulae for
the sine and cosine of the sum of two angles, we have from (d)

cos¢ + sing V “1=ev}
cosf +4sin V=1=efv-L

Multiplying member by member,

cos¢ cosd + cos¢ sinf . vV —1 4 cosf sing « V=1—
gin ¢ sinf = @ +Ov-1. ()]

But from De Moivre’s formula

cos (¢ + 0) + sin (¢ + )V —1= @ +O¥=1, (r)
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Equating the first members of (9) and (%), since in any equa- -
tion between real and imaginary quantities these are separately
equal in the two members, we have

cos (0 + ¢) = cosf cos ¢ — sin § sin ¢.
sin (6 4+ ¢) = sin 0 cos ¢ 4 cos b sin ¢.

These formulae, while they may be of course demonstrated
independently of De Moivre’s formula, are here deduced from
imaginary expressions. It would therefore appear that these
expressions admit of a logical interpretation.

If any positive quantity m be multiplied by (v/—1)? the re-
sult is —m. That is, in accordance with the geometrical inter-
pretation of the minus sign, we may regard the above factor
(V—1)? as having turned the linear representative of m about
the origin through an angle of 1807 If, instead of multiplying
m by (V—1)% we multiply it by ¥V—1, we may infer from
analogy that the line m has been turned through an angle of 907

about the origin. If, too, we ob-
¥ " serve that each of the four expres-
P sions

A AN m, mV=T, —m, —mv=1

X ':'" —m__ 10 m ‘iX is obtained from the preceding by
\ / multiplying by the factor v —1, they
‘\\ ‘"“/‘—}/’ may be regarded as demoting in
‘\_\ __,." order a distance m on the co-ordi-

T nate axes OX, 0Y, OX, OY'

(Fig. 33), V—1 being, as a factor,
a versor turning a line left-handed through a quadrant. These
expressions therefore locate a point on the axes, both as to dis-
tance and direction from the origin.

Since every imaginary expression can be reduced to the form
tatbdbV—=1, we may, in accordance with the above interpre-
tation of v/ —1, regard such an expression as defining the posi-
tion of a point out of the axes. Thus oa =a (Fig. 84) and
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AP =20, laid off at A at right angles to oa since b is multiplied
by V—1; so that in passing over oa and AP in succession we
reach the point p. It is also evident that such an expression
implicitly fixes the position of p by

polar co-ordinates, since Va® + b* = op Fig. .-

and tanroa=". In like manner

a

—b+avV—1 would locate a point P/
oA’ having a length = a, but laid off
perpendicular to oA, since V—1 is a
factor, and A'P'= — b. As before, ° 4
we have implicitly op'=Va*+ &* and
_tan ploa = —%.

»/ Al P

Furthermore, if we operate on the
first expression, a 4+ b~/ —1, which fixes the point P, with
v/=1, we obtain the second, —b+a+v—1, or V—1 as a
factor turns op through 90° so as to make it coincide with
op! As an operator, therefore, we may regard V—1, like i, j,
k, as a quadrantal versor, turning a line through a quadrant
in a positive direction. Algebraically it denotes an impossible
operation. (In Algebra quantities are laid off on the same
line in two opposite directions, 4- and —. It was because quan-
tities are so estimated only in Algebra that Sir W. Hamilton
called it the Science of Pure Time, since time can be estimated
only into the future or the past.) But it is unreal or imaginary
only in an algebraic sense. If the restrictions imposed by Al-
gebra are removed, by enlarging our idea of quantity and at the
same time modifying the operations to which it is subjected, this
imaginary character disappears. In applying the old nomen-
clature to these new modifications, it will be seen that the prin-
ciple of permanence is observed, 7.e., the new meaning of terms
is an extension of the old ; and when the new complex quantities
reduce to those of Algebra, the new operations become identical
with the old.
If now we operate upon

a+bv—-1,
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which, if we regard a=oa (Fig. 85) and bV —1=ar as
vectors, is equivalent to op, with the
expression

cos¢ +sing « V—1
of De Moivre’s formula, we obtan

acos¢—bsing++—1(asing+
b cos¢).

Draw OX' so that X'0X = ¢; also
PA" and AL perpendicular and As par-
allel to OX! Then

a cos¢ — b 8in g =0oL — A"L=1o0a)
asing+bcosp=1ra+ se=a"p.

Make oA'=04)' and lay off A'e'=a"p perpendicular to OX,
since it has v/ —1 as a factor ; then

(a cos ¢ — bsing) +V —1(a sin¢ + b cos ¢) = 0a'+ a'p'= op;]

and p'or = ¢.
But the formulae for passing from a set of rectangular axes
0X, 0Y, to another rectangular set OX, OY are

x=2x'cos¢ + y'sing,
y=y'cos¢ — z'sin¢h,
in which XOX'= ¢, =04, y=ap, z'= 04! y'=ra! or

OA = OK + KA,
AP = NP — A"K,

A"’k being perpendicular and A"~ parallel to OX.

Hence the effect of the operator has been to turn op left-
handed through an angle ¢, which is equivalent to turning the
axes right-handed through the same angle.
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+1,—1 and v/ —1 are particular cases of the general versor
cos¢ +sing « vV —1,

namely, when ¢ is 0; 180° and 90° respectively, 4 1 preserv-
ing, —1 reversing and v —1 semi-inverting the line operated
upon.

‘We may now see the meaning of De Moivre’s formula

(cos¢ +sing « V—1)™=cosme¢p +sinme . vV —~1.

As operators, the first member turns a line through an angle ¢
successively m times, while the second member turns it throngh m
times this angle once, producing the same result. The expressions
cos¢ +sing . V—1 and cos¢ +sing. e are identical, except
that in the latter the plane of rotation is not indeterminate,
being perpendicular to ¢, V—1 being any unit vector with in-
determinate direction in space.
Equation (37) may be put under the form

cosm (270 + ¢) +sinm (27n + ¢) « V—1=[cos (2mn + ¢) +
sin 2wn + ¢) . V—1]~.

In the second member if ¢ = 0 and m = §, we have V1 for all
integral values of n, while the first member for n=0, n=1,
n=2 becomes 1, —}+EV—1, —}—+¥EV—1, the three
roots of unity.

In the same way for m =1,

4 1,
P+ 2V,
- RN
gr={ T AV,
—%"‘4‘\/?1,
\ %_4-\/?1’

the six roots of unity. The real roots lie on the axis, along
which direction is assumed plus and minus, while the imaginary
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roots are vectors in a direction not that of the axis, and are the
sum of two vectors, one of which is in the direction of the axis
and the other perpendicular to it.

40. Let a and B be unit vectors along oa and os (Fig. 36).
Resolve 0a =a into the two vectors
Fig. 36. oD, DA. Then

OA = a = 0D + DA.
But
oD =cos8¢ . 3,

PA=¢(sing . B)=sin¢ . B,

¢ being a unit vector perpendicular to
the plane A0B, as in the figure. Hence

a=cos¢ . B+ sing . 5. (a)

Now when o and B are unit vectors, we have by definition
« B=(cos¢ + esing)B =a; or, comparing with (a),

B

(cosdp+ esing)B=cos¢ . B+ sing « 3.

The distributive law, therefore, applies to the multiplication
of a vector by the scalar and vector parts of a guaternion; for
if @ and B are not unit vectors, the tensors, as merely numerical
factors, can be introduced without affecting the versor conclu-
sion. Resolve 8 into the vectors oc, cB, cB being perpendicular
to oa. Then

0B = 3 = 0C + CB.
But .
oC=cos¢d . @, CB=—e(sing.a).
Hence
co8¢p « o —8in¢ « ca =,

or, by the distributive principle,
(cos¢dp —sing « ) a=B.
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Using the two members of this equation as multipliers on the
corresponding members of (a)

(cos¢ —sing . €)aa = (cos¢ . B+ sind . €8),

or, since = — 1,
—cosp+esing=fz. . . . . (38).

If a and B are not unit vectors,

Ba=TRTa(—cosp+esing) . . . (39).

Operating with each member of (@) on 8,

af3= (cos¢ . B+sing . B)B
=cos¢ . B*+sing . f?
=-—cos¢—esing . . . . . . (40),

or, if a and 8 are not unit vectors,
of=TaTB (—cos¢ —esing) . . . (41).

The product of any two wvectors is, therefore, a quaternion,
which, as before, may be regarded either as the sum of a scalar
and a vector or the product of a tensor and a versor. In gen-
eral notation

o =8aB8+VaB=8¢+Vg . . . . (42),
a3=Tq.Ug . . . . . . . . (43).

The scalar of the product [S8af8 = — TaTf cos ¢] is the product
of the tensors and the cosine of the supplement of the contained
angle.

The vector of the product [Vaf = — TaTS sin ¢ . €] has for its
tensor [TYof=TaTB sin ¢] the product of the tensors and the
sine of the contained angle, and for a versor [UVaB=~—¢c] a
unit vector at right angles to their plane such that rotation about
it as an axis i3 positive or lefi-handed.
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Representing the tensors of « and 8 by a and b, we have, as

in Art. 38, from Equation (41),

Fig. 86. Tg=ab
A Ug=—cos¢ —esin¢
A =—abcos¢
Yg=—absing . € )
TVg = absing
? UVg=—c¢

D SUg=—cos¢
€ VUg=—sin¢ . €
TVUq =sin¢

(TV:S)g=—tan¢

3

F(44).

41. Resuming the expressions for the products and quotients

of a and S3,
Ba=TLTa (— cos¢ + esing),
o3 =ToTB (— cos¢p — esing),
@: :_'B(cOqu—esinqb),
%.—_% (cos ¢ + esing),
we observe

(@)
®
©

@

1st. That if « and B be interchanged the sign of the vector
part is changed. It is equivalent to a reversal of the angle ¢,

and consequently a change in the direction of rotation.

UVBa=e=—TUVaf3

a _ B } . .
UV- =e=—TUVE

B

a

Hence

. (45).

Vector multiplication is not therefore in general commutative.

2d. If the vectors are unit vectors,

a=—B, op=—2.
Ba=—C, af=—7%

. (46),

S —
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the product being expressed also by a quotient. This is of
course always possible, as appears from (a), (b), (¢) and (d),
and the transformation may be effected thus:

g-_-_%‘:';_f(oos.p— esing), [Eq. (31)]
— Ba=TpTa (cosh — esing)
Ba="TBTa (— cos¢ + esing).

3d. If ¢ =0, then in either (a) and (d) or (c¢) and (d)
the vector part of ¢ becomes zero, and the quaternion de-
grades to a scalar. When ¢ =0 the vectors are parallel, and

a3 =—TaTB=—ab, as in Art. 35; also 5='—rf=(—z, as in

or

Art. 8. If at the same time a and @ are unit vectors = =21

a

[or=a0"!=—a’=1] and of = o® = -1, as in Arts. 83 and 28.

If then q be any quaternion and Yq = 0, the vectors of which q
1s the quotient or product are parallel.

4th. If ¢ =90; then in either (a) and (b) or (¢) and (d)
the scalar part of ¢ becomes zero, and the quaternion degrades
to a vector; and either the product or quotient of two rectangu-
lar vectors is therefore a vector at right angles to their plane,

aB reducing to — abe and = to %e, as in Art. 34. If at the
same time a and B8 are unit vectors, a8 =—e¢ and S =e¢, as in
Art. 27. B

If then q be any quaternion and 8q = 0, the vectors of which g
is the quotient or product are perpendicular to each other.

5th. If an equation involves scalars and vectors, the vector
terms having been so reduced as to contain no scalar parts, then
since the scalar terms are purely numerical and independent of
the others, the sums of the scalars and vectors in each member
are separately equal. Thus if

x+®+bﬁ=d+3/+a'a+(b'—b"),3
. (47,
z=d+y and aa+bB=aa+('—0"g “n

then
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which might also be written (Art. 38)

S(z+aa+bB8)=8[d+y+a'a+ (¥'—0")B],
.V(z+aa+8B)=V[d+y+a'a+t(b'—D")B].

6th. E being the quotient which operates on o to produce 8,
a

)E/{=p N (T )

7th. TVaB, or ab sin ¢, is the area of a parallelogram whose
sides are equal in length to a and b and parallel to « and B.
SaB, or — ab cos¢, is numerically t/l\le area of a parallelogram
whose sides are a and b, and angle ab is the complement of ¢.

we have by definition

8th. Since the scalar symbol 8 indicates the operation of
taking the scalar terms,
S8a=0. . . . . . . (49),

and, for a similar reason,
Yo=a . . . . . . . (50).

Again, since q’ is a scalar,
V@)=0. ... . . . (51),
S@=—a® . . . . . . (52).

V(a®) may be written V. o, as also S(a®) = 8 . a?, but these forms
must be distinguished from (Va)? and (Sa«)?, which latter are
also sometimes written V%o and §%.

9th. Comparing (a) and (d),
SaB=8Ba. . . . . . . (53),
and
Vo =—VBa . . . . . . (54).
Adding and subtracting (a) and (b), we have also

oB+La=28B ... . . . (55,
of —fa=2VaB . . . . . (56).
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10th. a8 « Ba=(8afB + VafB) (8aB —VaefB) [Egs.(53) and (54)]
= (8a8)*— 8afVaf + 8afVaf — (Vaf)*.
oB . Pa=(8aB)'—(VaB)! . . . . (57),
or, from Equation (44),
af+Pa=(TeB)® . . . . . (58).

Hence

42, Powers of Vectors.

The symbol i*, m being a positive whole number, has been
seen (Art. 28) to represent a quadrantal versor used m times
as an operator ; the exponent denoting the number of times ¢ is
used as a quadrantal versor. By an extension of this meaning
of the exponent, i* would naturally represent a versor which,

as a factor, produces the Eth part of a quadrantal rotation.

Thus it produces a rotation through one-third, and ¢! through
three-fifths of a quadrant, respectively. With the additional
meaning attached to the negative exponent (Art. 32), as indi-
cating a reversal in the direction of rotation, we may in general
define #, where ¢ is any vector-unit and ¢ any scalar exponent,
as the representative of a versor which would cause any right
line in a plane perpendicular to i to revolve in that plane through
an angle t x 907 the direction of rotation depending upon the
sign of t. Hence every such power of a unit vector is a versor,
and, conversely, every versor may be represented as such a
power. - 26

Since the angle (¢) of the versor is ¢ X 3’ we have t=—,

and any versor
cos ¢ + esing
may be expressed 3¢
cos¢ +€sing=€7 . . ., ., . (59),
and -
cosp—esing=€"7 . . . . (60),

the vector base being the unit vector about which rotation takes
place, and the exponent the fractional part of a quadrant through
which rotation occurs.
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The operation of which i* is the agent is one-half that of

which 7 is the agent, and therefore two operations with the
former is equivalent to one with the latter; or, as in Algebra,

A e A IR (3 ) B

or, employing the other versor forﬁx, if a, B, y are complanar unit
vectors so that

2
%:cos¢+esin¢=€7¢a
20
-g,=0030+esin0f=er
n since
e a B a ’
— 8 === —y
B v v

we have

(cos ¢ + esin¢) (cosd + esinf) = cos ¢ cos§ + €sin p sin b +-
e(sin ¢ cos 0 + cos ¢ sinb)

= cos (¢ + 0)+ esin (¢ + 6).

The second member is the U%, its angle being (¢+6), and

may be therefore expressed as the power of a unit vector, and

()
written 62(—%"—) this exponent is the sum of the exponents of

the factors, or

2 2(¢+0)
e#e? ewn' P S S (62).

This is evidently an abridged form of notation to which the
algebraic law of indices is applicable.

Since €=—1 and therefore é=1; if ¢=—1, ¢ must be an
odd multiple of 2, and if é=+1, ¢ must be an even multiple
of 2.

In either case the coefficient of = in ¢ = %w is a whole num-

ber, and cos ¢ tesin¢ degrades, as above, to the scalar £1,
since sin m= = 0 when m is an integer.
If ¢=+¢ ¢ must be an odd number; in which case also
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m=%, 3, &, etc., cosmw =0 and the versor degrades to the
vector te.

If the vector is not a unit vector, as i = p, to interpret the
exponent, say pt, 8o as to satisfy the formula

pot=p . . . . . . . (63),

which is analogous to Equation (61), we must combine with the
conception of rotation through half a quadrant an act of tension
represented by the square root of the tensor of p. Thus, if
=16, and we write .

=6t =16t}
then

et =16tit) (16t ity=161=)p,

or, if z =8,

pl=v8.it=v2.i},
bt =(v2.iH(V2.iH (V2. iH=V8.i=p.

And, in general,
pF=@)=2.9% . . . . . (64),

or the tensor of the power is the power of the tensor, and the
versor of the power is the power of the versor. Symbolically

T.pf=(Tp) . . . . . . (65),
Uepf=(Up) . . . . . . (66)

Any such power (o), as the representative of the agent of
both an act of tension and version, is therefore a quaternion,
whose tensor and versor can be assigned by the above rules, and,
conversely, every quaternion can be expressed as the power of a
vector, which quaternion may degrade to either a scalar or a
vector as seen in the preceding versor conclusions. Hence it
follows that the index-law of Algebra is applicable to the powers
of a quaternion.
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43. Relation between the Vector and Cartesian deter-
mination of a point.
If i, j, k are three unit vectors perpendicular to each other at
a common point, then the vector from this point to any point p
may be written
p=xit+y+2zk . . . . . (67),

in which 2, y, z are the Cartesian co-ordinates of p. If the vec-
tors are not mutually perpendicular and are represented by «, 53,
v, then

p=xat+yB+zy . . . . . (68),

in which 2, y, z are the Cartesian co-ordinates of p referred to
the oblique axes. So long as the vectors a, 8, y are not com-
planar, p refers to any point in space.
Since dny quaternion ¢ may be expressed as the sum of a sca-
lar and a vector, if w be any scalar, then

g=w+zat+yB+2zy. . . . . (69).

As composed of four terms, we observe an additional reason
for calling this complex expression a quaternion.
Any vector equation

p=c=dae+bB+cy,
involves three numerical equations, as
r=a, y=b, z=c,
unless the vectors are complanar ; in which case we may write -
y=na+mp,
and

p=(z+m)a+(y+m)p,
o= (a+cn)a+ (b+cm)B,

which, for p = o, involves but two equations

z+2zn=a+cn, y+zm=>b4cm.
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Resuming the quadrinomial form of ¢, when the component
vectors are at right angles, we have

g=w+tzi+ yj+ 2k
Sg=w « e .. (70).
Yq =i+ yj+ 2k

Since (TVg)?=— (Vq)?=2*+ y* + 2*, we have

TVg = Vo' + ¥+ 7
Uvq=_Yg__:m’+yj+zk e (7).

™~ Voty e
Also, since (Art. 41, 10th.)
(T9)*=(8q)* — (V@) = v’ +2* +y* + 2%,

Tg=Vw'+2*+y' +2* \
q w + ¢ + yj+ 2k
T V@47
SUg=% _ w > .. (72).

T~ Vot +y + 2

TVq ?+y+2
TVU =_=,[—
=9 "N+ 2757

44. The plane of a quaternion has been already defined as the
plane of the vectors or a plane parallel to them. The axis of
a quaternion is the:vector perpendicular to its plane, and its
angle is that included between two co-initial vectors parallel to
those of the quaternion. If this angle is 907 the quaternion is
called a Right Quaternion. Any two quaternions having a
common plane,*or parallel planes, are said to be Complanar.
If their planes intersect, they are Diplanar. If the planes of
several quaternions intersect in, or are parallel to, a common

- line, they are said to be Collinear. It follows that the axes of
collinear quaternions are complanar, being perpendicular to the
common line. Complanar quaternions are always collinear, and

Ug=
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. .
complanar axes correspond to collinear quaternions, but the lat-
ter may of course be diplanar.

l
Let g, and -0—9 be any two quaternions. If complanar, they

may be made to ha.ve a common plane; and, if diplanar, their
planes will intersect. In the former case let oE be any line of
their common plane, or, in the latter, the line of intersection
of their planes. Now, without changing the ratios of their vec-
tor lengths, the planes, or the angles of the given quaternions,
two lines, or and oG, may always be found, one in each plane,
or in their common plane, such that with o we shall have

o'A  oF n o'c o¢,

—_—= a =

o'B  OE o> o’

and, therefore, any two quaternions, considered as geometric
fractions, can be reduced to a common denominator; or, in the
above case

o'a o'c_oF o6_or+4 06
0B ' 0D OE ' OE  OE

Moreover, a line on, in the plane Ao'B, may always be found
such that
o'a__OE
oBs oH’
and therefore
o'c o'a_oc O _ oe
0> 0B OE oOH oH
and
o'a o'c _OoF oG _OF OE_OF

OB OD OE OE OE 0G O0G

45. Reciprocal of a Quaternion.

The reciprocal of a scalar is another scalar with the same
sign, so that, as in Algebra, if  be any scalar, its reciprocal is
w'l = l. ’

x
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The reciprocal of a vector has been defined (Art. 33), so that,
if a be any vector, 1_ al=— an.
a Ta

The reciprocal of a quaternion has also been defined (Art.

26) ; thus
=9

™le

being any quaternion,
E —1 =g-!
a q 7

is its reciprocal. The only difference between the quotients
E and B (Fig. 87) is that, as opera-
a

tors, one causes 8 to coincide with a,

while the other causes a to coincide

with 8. A quaternion and its recipro-

cal have, therefore, a common plane

and equal angles as to magnitude, .
but opposite in direction; that is, 4",
their axes are opposite. Or

Fig. 37.

Z 1=£q and axis L = — axis q.
q. q

a_B_
BTl

I

EEE

the product of two reciprocal quaternions is equal to positive
unity, and each is egqual to the quotient of unity by the other;
we have, therefore, as in Algebra, lq:l and q=%, and no

1 @
new symbol is necessary for the reciprocal. - is, however,

sometimes written Rg, R being a general symbol of operation,
namely, that of taking the reciprocal. It follows from the above
that

Ta—_:_. e o oo . . (73),
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or, the tensors of reciprocal quaternions are reciprocals of each
other ; while the versors differ only in the reversal of the angle.
If then

2 (cos ¢ + € sin )

we shall have (74).

Q- Ybln
2l

=q'1=§=:—lg(003¢—€ sin¢)

46. Conjugate of a Quaternion.

If B' (Fig. 37) be taken complanar with 8 and e, and making
with a the same angle that B8 does,
Fig. 37. TR' being also equal to TS, then, if

§= g, ﬁ' is called the conjugate of

g, and is written Kq. The symbol K
indicates the operation of taking the
conjugate. A quaternion and its con-
< jugate have, therefore, a common

plane and tensor, as also, in the ordi-
nary sense, equal angles; but their axes are opposite; or

q
TRq=Tg= L~ . .. (T5).
and T 1
a.xis](q:—a.xisq:axisa
J
If then
a_Ta
g=-=—(cos ¢ + esin
G g (cos b+ esing) | |
we shall have e . . (76),
Kq=%é(cos¢—esm¢) ‘

or, the tensors of conjugate quaternions are equal, and the versors
differ only in the reversal of the angle.
Regarding a scalar and a vector as the limits of a quaternion
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(Art. 41, 3d and 4th), we see from Equation (76) that the con-
Jjugate of a scalar is the scalar itself, and that

Ko=—a=—Tala . . . . . (77),

or, the conjugate of a vector is the vector reversed. In general
notation we may write
=98¢+ Vg,

whence it follows from the above that

or (Art. 43)

Kg=8q—Vgq } (18)

Kg =w — oi — yj— 2k

that is, the scalar of the conjugate of a quaternion is the scalar
of the quaternion, and the vector of the conjugate of a quaternion
is the vector of the quaternion reversed ; a result which may be
expressed symbolically

vxq=—Vq}’ C e e (19).

These are Equations (53) and (54).
If we add and subtract the two conjugate quaternions

g=8¢+Vq, Kg=8¢—Vq,

we have
‘1+K9=2S‘1}. C e .. (80).

The sum of two conjugate quaternions is, therefore, always a
scalar, positive or negative as the Zg is acute or obtuse. If

Lqg= g, this sum is evidently zero.

Since, if ¢ is a scalar, Kg = g, then, conversely, if Kg=gq, ¢
is a scalar.
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47. Opposite Quaternions.
If, for &, we write %“ (Fig. 87), the latter is called the
Opposite of g, and is evidently — g, for

—a O0—a 0 a

—e_Y=e_Y_ % _0—g=—
BB B =-

As appears from the figure, opposite quaternions have a com-
mon plane and tensor, supplementary angles and opposite axes;
or

T(—q)=Tq, L—q=7w—~Lq and axis (—¢)=— axis q.

Since —a ,a _a—a

the sum of two opposite quaternions is zero, or

Fig. 37. g+ (—9)=0.
- Also, since
—a,a_—a B_—a__ 4
B'B B e ’
—q
/{a T =-1,
or, their quotient is negative unity.
If then
g=%= 1—(cos¢+esm¢)
' B T8
we shall have .« . . (81).

—q=:‘T‘;(—cos¢—csin¢)

If £ q="2—", Kg=-gq; and, conversely, if Kg=—g¢, q is a
vector.
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48. Since Ugq is independent of the vector lengths, and only
dependent upon relative direction, versors are equal whose axes
and angles are the same. Hence

UKq:U%. C e e .. (82)

But (Art. 24)
v(1:2)=08=08_,. L
B a Ua L)/¢]
1_1 :
c Uo=— « « . . (83
g Uq (83),
and, Equation (82),
1
UKg = —.
q Tq

Again, since the conjugate of a versor is the same as the re-
ciprocal of that versor, we have, from Equations (82) and (83),

UKg=KUg . . . . . . (84).

49. Representation of Versors by spherical arcs.
If o, B, 7, oo are co-initial unit vectors, their extremities will

all lie on the surface of a unit sphere (Fig. 38). g being "any
quaternion, Ug turns 8 from the position
oB to 0aA, and this versor may be repre-
sented by the arc BA joining the vector
extremities ; for this arc determines the
plane of the versor as also the magnitude
and direction of its angle, the direction
of rotation being indicated by the order
of the letters as in the case of vectors.
This representation of versors by vector
arcs is of importance in the theorems re-
lating to the multiplication and division of quaternions, and
may be made upon a unit sphere ; for, if a, 8, y, «----- are not unit
vectors, the quaternions will differ from the versors by a nu-
merical factor only, the introduction of which cannot affect the
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versor conclusions. Disregarding, then, the tensors, since ver-
sors are equal whose planes are parallel and angles equal (in-
cluding direction), equal arcs on the
same great circle and estimated in the
same direction represent equal versors,
for any arc may be slid over the great
circle on which it lies without change of
length or reversal of direction. On this
plan B'A = aB will represent the recipro-
cal or conjugate of BA, and a quadrantal
versor would have for its representative
BC, an arc of 90° Also, the versors of
all complanar quaternions will be repre-
sented by arcs of the same great circle, while arcs of different
great circles will represent the versors of diplanar quaternions,
which are always unequal.

If M, X and p are the vertices of a spherical triangle, the vector
arcs MN, Np and pm will represent versors, and it will be seen
that by taking the geometric sum of two of these arcs in a cer-
tain order, the remaining arc will represent the versor of their
product ; so that if ¢' be represented by pm and g by NP, ¢'y may
be constructed by a process of spherical addition represented by
PM + NP = NM, NM representing the versor ¢'¢; but that because
¢'q and qgq' are not generally equal, this process of spherical ad-
dition, as representing versor multiplication, is not commutative
as was that of vector addition, PM 4 NP and NP 4 PM representing
diplanar versors.

50. Addition and Subtraction of Quaternions.

Since a quaternion is the sum of a scalar and a vector, in
finding the sum or difference of several quaternions the sum or
difference of their scalar and vector parts may be taken sepa-
rately. The former will be a scalar and the latter a vector;
consequently, the sum or difference of several quaternions is a

quaternion.
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1. Both the associative and commutative principles being
applicable to the summation of scalars, as also to that of vectors
(Arts. 4, 5), they also hold good for the addition and subtrac-
tion of quaternions ; or

g+r=r+gq }
and - e . . (85).
g+(r+s)=(g+r)+s
If then
g=8¢+Vq
r=S8r+Vr -
8=q+'r+ ...... =S.9+V3;
in which
S8s=8(q+7r+- )Y=8¢ + 8r 4 «eee ,
Vs=V(g+7+ et )=Vg+Vr+4 ... ,

and, in general,
83¢ = 38q }
S e R (86),

or, in quaternion addition and subtraction, 8 and V are distribu-
tive symbols.

2. Ifq4+r+4p+ e =8, then, Equation (78),
K9+ Kr+Kp + oot =8Sq+ Sr+ Sp + oo —Vg—Vr—Vp — «ceee
= 83 —Vs= Ks.

.. 3Kg=XK3%¢ . . . . . . (87),
K, like 8 and V, being a distributive symbol.

3. Again, since the conjugate of a scalar is the scalar itself,

KSq = Sq.
But 8¢ =SKgq. Hence

KS¢y=8¢=8Kqg . . . . . (88).
Also, since the conjugate of a vector is the vector reversed,

KVg=—Vq.
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But — Vg=VKq. Hence
KVg=—Vg=VKqg . . . . . (89);
hence K 78 commutative with 8 and V.

4. Since any two quaternions may be
reduced to a common denominator (Art.
44), so that

Fig. 38,

L a4y

BT8T &
and since
Ta'+ Ty' > T(a'+ )

unless o' =y’ and >0, it follows that
Tq+Tq'>T(9+¢)

unless ¢ = 2¢' and 2>0. Hence, in general, TSq is not equal
to 3Tq. Moreover, since UZgq is a function of the tensors under
the = sign, while SUq is independent of the tensors, USgq is not
equal to 3Uq. This also appears from the representation of ver-
sors by spherical arcs (Fig. 38). Hence, in the addition and
subtraction of quaternions, T and U are not, in general, dis-
tributive symbols.

51. Multiplication of Quaternions.

1.
Let 9=89+Vq, r=8r+4Vr

be any two quaternions. Then
p=qr==SqSr 4 SqVr + 8rVq +VqVr.

The last member, being the sum of a scalar and a vector, is a
quaternion. Hence, the product of two quaternions is a quater-

nion, and
p=8p+Vp==8¢r+Vqr,
in which
Sgr=8¢8r+8.Vg¥Vr . . . . (90),
and

Yqr=8qVr+8Vg+V.VoVr . . . (91).
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If we multiply ¢ by r, we obtain

8rq =8rSq + 8. VrVq,
VYrqg=8rVq + SqVr 4+V.VrVq.

But, Equation (53),

S.V»Vg=8 .VqVr.
o 8rg=8¢gr. . . . . . . (92).
But, Equation (54),

V . Vqu= -—V . VTVq,

and therefore the products gr and rg are not equal. Hence,
quaternion multiplication is not in general commutative. If,
however, ¢ and r are complanar, Vg and Vr are parallel, and
Y.VgVr=0; in which case gr=rq. Conversely, if gr=1rg, ¢
and r are complanar.

Since Reciprocal, Conjugate and Opposite quaternions are
complanar, they are commutative, or

gKg=Kq.q
ql—lq—qr‘—q"q 93
=2 . . . (98).

9(—9)=—qq

2. It has been shown (Art. 44) that any two quaternions
g, g; can be reduced to the forms B and ¥ having a common

a a
denominator, or to the forms % and Y. Hence

LY _ Y __-Y Z2¢_7Y —=Tg' s
= ™ T~ T T Ta Ta— 10 T¢ (04
U2-'=U-Z=IE=E'Y.E-—U._YOU__B—U'OU '
¢ BTUBT U UB T Ua'Ua_ 1M
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In a similar manner

y=T|Y. % |=12=Tr_ !_v Ta _ pg
T(qq)——T[a 8] $T T Ta T Tq . Tq (95)
U(q'q) =T =Uq'Ug

Hence the tensor of the product (or quotient) of any two gqua-
ternions is the product (or quotient) of their tensors, and the ver-
sor of the product (or quotient) is the product (or quotient) of
their wversors.

In fact, tensors being commutative, we have, in general,

THg=0Tq . . . . . . (96),
IIg = TIgq . Ullg =IITq . IIUgq,
S Ug=00¢g9 . . . . . . (9.
3. The multiplication and division of tensors being purely
arithmetical operations, we proceed to the corresponding opera-

tions on the versors. It has been shown (Art. 44) that any
two versors ¢, ¢, may be reduced to the forms

_B_oB ,__y' oc’ Fio. 89

Q—G—OAv qg= ﬁ_—o;’ (Fig. 39),
A, B, C, being the vertices of a spherical triangle on a unit
sphere. Then

If we represent the versors ¢' and g by the vector arcs Bc'
'
and AB, then the versor Y, the product of ¢'q, will be repre-
a !

sented by the arc Ac'; moreover if q"_—-é represent any divi-
dend and ¢ =§ any divisor, then
" _y

g a
the versor of the product ¢'g being

OIO

_Y_
v

Tbln

BC' + AB = AC/,
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and the versor of the quotient gq'_’
. AC'— AB = BC';
and, as in the addition and subtraction of quaternions, the pro-

cess consisted in an algebraic addition and subtraction of scalars
but a geometric addition and subtrac-

tion of vectors, so the multiplication Fig. 39.
and division of quaternions is reduced , B
to the corresponding arithmetical ope- * N ¢

rations on the tensors and the geome-

trical multiplication and division of

the versors, the latter being con-

structed by means of representative o

arcs and the rules of spherical addition and subtraction.

4. The representation of a versor by the arc of a great circle
on a unit sphere illustrates the non-commutative character of
quaternion multiplication. For, AB and BA' (Fig. 39) being equal
arcs on the same great circle, as versors

AB = BA',
and similarly
CB = BC'.
Now if g a g
ot Y
==-=-— and r=-=5%
=78 y B
then . , JB o
qr=ﬁ-—=— and ’rq:ﬁ;:;

the versors ¢r and rg being represented by the arcs ca' and Ac’
respectively. These arcs, though equal in length, are not in the
same plane, and therefore the versors rg and ¢r are not equal.
Constructing these versors, by spherical addition we should have

BC' 4 AB = AC/,
AB 4 BC' = BA' 4 CB =cCA/,

a change in the order giving unequal results.
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Hence, unless Ac' and ca' lie on the same great circle, in
which case ¢ and 7 are complanar, quaternion multiplication is
not commutative.

5. Other results, hereafter to be obtained symbolically, may
be readily proved by means of spherical arcs, as follows :

If aB (Fig. 89) represents the versor of g = 'f—:, A'B = BA repre-
sents the versor of Kq or 1 The spherical sum of AB + Ba
being zero, the effect of the versors in the products ¢Kg and qé

is to annul each other. Hence, if the vectors are not unit

VectOl'S, qxq = Kq q= (Tq)’ e e o e (98),
1 1
g—-=-q= 1.
q ¢ ?
Again, from
AB +BC'=cA',
we have

a
qr=—,

and the versor of K (gr) will therefore be represented by a'c.

But
A'c=BC+4'B,
whence
: K(gr)=KrKq . . . . . . (99),

or, the conjugate of the product of two quaternions is the product
of their conjugates in inverted order.

6. The product or quotient of complanar quaternions is readily
derived from the foregoing explanation of versor products and
quotients as dependent upon a geometric composition of rota-
tions. For, disregarding the tensors, the vector arcs which
represent the versors, since the latter are complanar, will lie on

the same great circle, and the processes which for diplanar ver-
1

sors were geometric now become algebraic. Thus for q'=7—3

B «a
a

a

andq=§, L
M9=99= ’

2
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and, Fig. 39,
BA' 4 AB=AB + BA'=AA';

)
also for ¢"="2 and ¢'= é,
a a

and
BA 4+ AA'=BA".

The product or quotient of any two complanar quaternions is
therefore obtained by multiplying or
dividing their tensors and adding or Fig. 89.
subtracting their angles. Thus

pa=Tp.Tqleos (s +8)+  AE > O°
esin (¢ +6)]. ¢
Ifp=gq, qy
¢* = (Tq)* (cos 2¢ + esin 2), v
or, generally,

¢"=(Tq)"*(cosn¢ +esinng) . . . (100),

whence result the following general formulae,

U(¢") =(Tg)"
S8U(¢")=cosnLyq ot (101),

TVU(¢") =sinnZq
which are all involved in Art. 42.

582, 1. Distributive and Associative Laws in Vector
and Quaternion Multiplication.

Having assumed (Art. 24)

I

y_B+y
a

+I1=20

]
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whence
Bat 4ol = (B+7) o

since a is any vector, we have

Batye=(B+7)a. (@)

- Taking the conjugate of (8 + y)a,
K[(B+7)e]=KaK(B+7) [Eq. 99]
= Ka (KB + Ky). [Eq. 87]

Taking the conjugate of (Ba + ya),
K(Ba + ya) = KBa + Kya = KaKB + KaKy.
Ko (KB4 Ky) = KaKpB + KaKy,
o'(B'+ ) =af'+ aly. (%)

Hence, from (a) and (D), the multiplication of vectors i3 a
doubly distributive operation, and

B+y)(a+8)=PBa+ya+p3+y8 . . (102).

Hence

or

2. Let q_B be any quaternion and a any vector; also 8 a

vector along the line of intersection of a plane perpendicular to

a with the plane of ¢. Then another vector, 8, may be found in

the latter plane, such that q_E B having the same angle, plane

85
and axis as '[; . Also let y be a vector in the intersecting plane,

such that %: a. If now a be any scalar,

— Y\B _ B

@+ar=(a+3)3- (ﬁ*ﬁ)f
_aB+y B_aB+y
=7B ‘s "%
_ B,y B B
=ag+y=a5+5-5

= aq + aq.
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Taking the conjugates as above, =

ql(a!+ al)= qla'+qla"
Hence, in general,

(a+a)(a'+a")=aa'+ aa'+a'a + ad'; (c)

or regarding a, a; and a, o' each as the sum of two scalars and
two vectors respectively,

(a+ a3+ a1 + ap) (@', + 'y + a'y +a's) =
(a1 4 a5) (a'y + a'y) + (a1 + a5) (o) + a'y) + (a'y +a'y)
(al+ 0‘2) + (al + az) (ﬂ'l + a'z) =
(a, + a3) (a'y 4+ a'y) + (0 + &) (a's + a'y) + (a3 + a3)
(a'y+a') + (as+as) (a'2+a',),

since, from (c), the factors in the expression preceding the last
are distributive. Putting for the parentheses, which are sums
of a scalar and a vector, the quaternion symbols p, g, r and s,

ha
e e P+ (r+s8)=pr+ps+qgr+gs . . (108),

or, the multiplication of quaternions is a doubly distributive
operation. )

8. Assuming any three quaternions under the quadrinomial

form, Article 43, ¢, k, j being unit vectors along three mutually .

rectangular axes, we have

g=w +zi +yj + 2k, ()
r=w' +2% +yj +2'k, )
s=w"+ 2"+ y"j+ 2"k. (c)

Multiplying first (c) by (b) and the result by (a), and then
(b) by (a) and (c) by this result, observing the order of the fac-
tors, it will be found that the. scalar and vector parts of these
two products are respectively equal, and therefore

g(rs)=(gr)s . . . . . (104),

or, the associative law is true in the multiplication of quaternions.
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§3. 1. If a and B be any two vectors, then
(e+B)(a+p)=(a+p)" =0 +(aB + Ba) + £,
whence, Equation (55), or, comparing Equations (39), (41)

and (80), (a+B)2=a*+28B8+F . . . (105).
2. Similarly

(a—B)(a—B)=(a—B)*=0’—(af + fa) + B,
(a—B)*=a?—28aB+ B . . . (106).
3. From Equation (57), or by multiplying ¢ =8¢+ Vq into
B=MTVe g ga= (80— (V)%
hence, from Equation (98), the equalities
af « Ba=gKg=(8aB)’ — (VaB)*=(Tq)* . (107).

or

54. Applications.
1. In any right-angled triangle, the square on the hypothenuse
is equal to the sum of the squares on the sides.
Let the sides, as vectors, be repre-
Fig. 40. sented by a and B (Fig. 40), and the

*  hypothenuse by v. Then
< B y=a+p.
- Squaring, Equation (105),
a
F=a+28a8+ 4,
or, Art. 41, 4,

yY=d+p,
or, as lengths simply, changing signs [Equation (83)],
BAZ =BC? 4 ca?

2. In any right-angled triangle, the medial to the hypothenuse
i8 one-half the hypothenuse.
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In Fig. 40, for the medial vector cp = 8, we have (Art. 15)

8=4(B—a),
28=B—a.

or

Squaring, and since 88a =0,

48 =1 +adl,
or
CD2=CA2+CB’=LI;’ H
4 4’
. co =48
2

8. If the diagonals of a parallelogram are at right angles to
each other, it is a rhombus.
Let the vector sides be represented by a and 8. Then a+f3
and a — f3 are the vector diagonals.
By condition
S(a+B8)(a—B)=0. [Art. 41, 4]

But, Equation (53),

S(a+8) (a— B) =o' — f'=0,

which is true only when Ta=Tg, that is when the sides are
equal.

4. The figure formed by joining the middle points of the sides
of a square 18 itself a square.

Let Bc and ca (Fig. 40) be the sides of a square, P and Q
their middle points, and o the middle point of the side opposite
Bc. Then, with the same notation,

rR=4(@+p), <=3B—a);
.. 8(pQ.Q0)=0,

or pQ and Qo are at right angles.

5. In any triangle, the square of a side opposite an acute
angle is equal to the sum of the squares of the other sides, less
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twice the product of the base and the line between the acute angle
and the foot of a perpendicular from the angle opposite the base.

Fig. 41. Let ca = B, cB = q, BA =y (Fig. 41).
Then
B=oa+7,
[32=a2+2Sa7+'y’.
Now
28ay =— 2Ta Ty cos (180°— B)=
2accosB.

Hence

—P=—a—c+2accosB=—a®—c?+ 2ad,

or

V¥=a’+c—2ad.
If B is a right angle, S8ay =0, and, as in Example 1,
B=at4c.

‘What does this theorem become for a side opposite an obtuse

angle?
& [ )

6. In any plane triangle, to find a side in terms of the other
two sides and their opposite angles.
In Fig. 41,
B=a+y.

Ba= o+ va.
Taking the scalars (Art. 41, 5),

Multiplying into a

8Ba = — a® 4 8Sya,
or
— ba cosc =— a? — ca cos (180°—B) ;
*. a=2>b cosc+ c cosB.

The above operation with a is indicated by saying simply,
¢¢ operating with X 8. a,” meaning that o is first introduced and
then the scalars taken. The position of the sign X will indicate
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how a is used. If used as a multiplier, we should write, ¢ oper-
ating with S « 2 X.”

7. The sines of the angles, in any plane triangle, are propor-
tional to the opposite sides.

In Fig. 41
'8 B=a+7y.

Operating with X V. a, that is, as explained in the preceding
example, multiplying into a and taking the vectors (Art. 41, 5),

VBa=V(a+7y)a=V.a*+Vya.

But V. o?*=0; hence
YBa=Vya,
ba sinc = ca sinB,
or
sinc:sinB::c: b.

Notice that YBa and Vya involve a unit vector at right angles
to their plane, and that, owing to the order of the vector factors,
¢« has the same sign in both members of the equality, and may
therefore be cancelled. The period in V. o? may evidently be
.ohitted, as in YBa; it will be used hereafter only to avoid am-
biguity. Thus Kqgr means the conjugate of ¢r; but Kg.risr
multiplied by the conjugate of g. Y

8. In a right-angled triangle, to find the sine and cosine of the
acute angles.

Let AB=1y, ac=f, BC =a (Fig. 42). Fig. 42,

Then B

B=y+a,
whence c

‘Y a / a
=14 .
B B

Taking the scalars, since $ §= 0, A 5 c

c b
1=;cosA, or COSA=--
b c
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Fig. 42. Taking the vectors
B
VY ivi=o
gTVg="
c
a c

. a .
—8inA ——=s8inc=0;
b b !

in A a
‘. SInNA =-.
A 5 C c

In this example UV =— UV 5
PerlE B
9. To find the sine and cosine of the sum of two angles.
Let a, B, y be complanar unit vectors (Fig. 43), and e a unit
vector perpendicular to their plane. We have

Y_y B
e B a
Fig. 43. in which
Y
/:f,/llyﬂ 3_:=cos(¢+0)+esin(¢+0),
0
L ." %:cosd»{-esimﬁ,
2
§=c090+¢sin0.

Hence

c08(¢ + ) + esin(¢p + ) = (cos ¢ + esin ¢) (cos § + esind)
= cos ¢ cos b + e(sin¢p cosh + cos ¢ sinfh) + e sind sin ¢.

Equating the scalar and vector parts in succession, there re-
sults, since &€ =—1,
cos(¢ + 6) = cos ¢ cosh — sin ¢ sinb,
8in (¢ + 6) = sin ¢ cosf + cos ¢ siné.

10. To find the sine and cosine of ﬁze difference of two angles.
Let the angle between y and a (Fig. 43) be y. Then

B_B

_ a
Y e Y
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in which
= cos(y — 0) — esin(y —4),
= cosf + esind,

= cosy — esiny,

RI8 IW/RI™®

and, as in the preceding example,

cos(y — 6) = cosf cosy + sind sin y,
sin (¢ — 6) = cosé sin Y — sind cosy.

11. If a straight line intersect two other straight lines so as to
make the alternate angles equal, the two lines are parallel.

Let a and y (Fig. 44) be unit vectors along AB and cp, and
B a unit vector along ac. Then

af3 = — cos@ + €sind, Fig. 4.
By =—cos0 — esinf; B___8%, s/ B’
whence B
a8 — By =2VaB, .

and therefore, Equation (56), y=a.
If a = aB, then
af3 = cosf — esind,
ﬂy =—cosf — esino,
a3 — By =28af;
S y=—o. [Eq. (55)]

12. If a parallelogram be described on the diagonals of any
parallelogram, the area of the former i3 twice that of the
latter.

Let a and B represent the sides as vectors ; then the diagonals
are e + 3 and a — 3, and

V(a+B)(a—B)=V(Ba —af) =2Vpa,
since Va?=VB%*=0 and — Va8 = Vfa.
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But, from the order of the factors,
UV(a+B) (a —B) =TV,

TV(a +B) (a —8) =2TVpa,
which is the proposition (Art. 41, 7).

hence

13. Parallelograms on the same base and between the same

parallels are equal.
We have (Fig. 45)
Fig. 45.

A E D » BE = BA + AE
= BA 4+ ZBC.

Operating with V. Bc X

c V(BC . BE)=V(BC . BA),
since VaBc?= 0.

Hence
BC . BE 8in EBC = BC . BA 8in ABC,

B

which is also true when the bases are equal, but not co-incident.

14. If, from any point in the plane of a parallelogram, per-
pendiculars are let fall on the diag-
onal and the two sides that contain
it, the product of the diagonal and
its perpendicular i3 equal to the
sum, or difference, of the products
of the sides and their respective per-
pendiculars, as the point lies with-
out or within the parallelogram.

Let oA =4, 0B =p, op=p (Fig. 46).

Then
Vap +VBp =V(a+ B)p.
But
UVap =TUVBp=TUV(a+ B)p.
Hence

TVap + TVBp =TV (a + B)p.
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For p' = op', we have

UVap'=—TUVBp'=1TVV(a 4 B)p";
. TVap' ~TVBp'= TV(a+ B)p:

15. If, on any two sides of a triangle, as ac, aB (Fig. 47),
any two exterior parallelograms, as ACFG, ABDE, be constructed,
and the sides ED, GF, produced to meet in H, then will the sum of
the areas of the parallelograms be equal to that whose sides are
equal and parallel to cB and AH.

Let AE=4qa, AB=f, AC=Yy
and Ac =8. Then

Fig. 41,

AH = AE 4 EH
=a—2aB.

Operating with X V.8

V(am.8)=Vaf. (@) Eeommmenb—ir

‘We have also

AH = AG 4 GH
=8—yy.

V(am . y)=Voy. )
Hence, from (a) and (b),

VAR(8 — ) =VaB —Vby,
V(aH ¢ cB) =VaB —Voy =Vaf +Vy3.

Operating with XV.y

These vectors have a common versor ; whence the proposition.

If one of the parallelograms, as Ap', be interior, then AE'=— a
and AH'=—a—2'8=120+y'y, and
V(ax's B)=—VaB,
Y(an'. y)=Voy;

. Vau'(B —y)=—Vaf —Véy =VBa —V&y.
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But in this case
UV(aH'. cB)=—UVBa=— UVdy,

and the area of the parallelogram on AH', cB, is the area of ar
minus the area of Ap!

16. To find the angle between the diagonals of a parallelogram.

Let ap=38c=a (Fig. 48),
and BA =cp = 3, d and d' being
the tensors of the diagonals.
Then

AC.DB=—(a—fB)(a+p)
= — o — (s — fo) +
=—a*—2VaB + B

Taking the scalars

€osDpoC « dd'=a® — b,
Taking the vectors
sin poc « dd'= 2absiné,
since UV(AC « DB) =— UVaf.

ta.nnoc=—tan¢=-2:2L_Silb—'g.

17. The sum of the squares on the diagonals of a parallelo-
gram equals the sum of the squares on the sides.

In Fig. 48
BD’=(a+ B)*= o’ + 28aB + %,
cA’=(B—a) =p"'—28aB 4 d*;
o~ CA'4 BD'= 247421,
or

BD? 4 cA?=BA? 4 AD?® 4 pC? 4 cB®.

18. The sum of the squares of the diagonals of any quadri-
lateral is twice the sum of the squares of the lines joining the
middle points of the opposite sides.




GEOMETRIC MULTIPLICATION AND DIVISION. 91

Let AB=a, Ap= 8, pc=1y (Fig. 49). For the squares of
the diagonals, we have

B+ +B—a)t o
E 7
and for the bisecting lines @;
[38+y—3B+y—a) +[B+3y—3a]’ 4 T a

‘Whence the proposition readily-follows.

19. The sum of the squares of the sides of any quadrilateral
exceeds the sum of the squares on the diagonals by four times the
square of the line joining the middle points of the diagonals.

Let AB=a, Ac=f, AD=y
(Fig. 50). The squares of the ) Fig. 50.
sides as vectors are D

@+ (B—a) +(y— B+ c
or A

2(a®+ B +7%) — 28Ba — 28yB.

The squares of the diagonals are
B +(y—a)'
or
B+ ¥ + o — 28ya.

The former sum exceeds the latter by
¢+ B+ — 28Ba — 28yB + 2 8ya,

(a—B+7)?%
which may be put under the form

4(1‘*_?'_@)'.
7 T2

or by
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But ‘1';_7=Ao, and — g:sA. Substituting these values,

we obtain
4(a0+s4)? or 4807,

which is also true of the vector lengths.

20. In any quadrilateral, if the lines joining the middle points
of opposite sides are at right angles, the diagonals are equal.
‘With the notation of Fig. 49, we have

FE . GH=[4(y —a) + Bl3(a +7).
But, by condition,
S(FE . GH)—'Y’ i +SBY sTgl‘l=O

‘Whence
(y+B)?=(B—a)?
AC? = BD?,
or
AC = BD.

Fig. 51. 21. In any quadrilateral prism, the
c sum of the squares of the edges exceeds
the sum of the squares of the diagonals
by eight times the square of the line
Jjoining the points of intersection of the
two pairs of diagonals.
Let oA=ga, 0B=p, 0=y, 0D=23
4 (Fig. 51). For the sum of the
' squares of the edges we have

2[’+ B+ (3 —a)’+27+ (3 —B)"],
2[28 4+ 28+ 2 + 28 — 2880 — 2838]. (a)
The sum of the squares of the diagonals is
+)'+( =8 +(y+a—pB)*+(y+B—a)}
2(a?+ B2+ 8+ 24— 28apB). ®)
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The vectors to the intersections of the diagonals are

$(@+y) and $(y+a+p),
and the vector joining these points is
$(a+B-9).
Squaring and multiplying by eight, we have
2[a®+ B% + 8* + 28e — 28ad — 28p8],
which added to () gives (a).
22. In any tetraedron, if two pairs of opposite edges are at

right angles, respectively, the third pair will be at right angles.
Let oA =a, 0B = f3, oc =y (Fig. 52).

The conditions give ’ “BC 8.
8¢ (B—y)=0,
88(a—7)=0.
Subtracting the first of these equa-
tions from the second o B
Sy ("’ - B) =0,
A
which is the proposition.

23. To find the relations between the edges, plane angles and
areas of a tetraedron.
With the notation of Fig. 52, we have

ok« B=(a—1)(B=1);
CA.CcB=af—ay—yB+7y% ()

or

Representing the tensors of ca and cB by m and », and taking
the scalars of (a),

8(ca « cB)=8af — Say — $y8+ 7%,
whence

¢ — ac cos A0C — bc COS BOC = mn €O8 ACB — b COSAOB,



94 QUATERNIONS,

which is the relation between the edges and their included
angles.
Taking the vectors of (a), and squaring,

[V(ca . cB)]*=(VaB)*—VaBVay —VaBVyB —VayVaf } ©®)
+ (Vay)? +VayVyB —VyBVaf +VyBVay 4+ (VyB)% ) -

— (VaBVyB +VyBVaB)=—28 . VafVyB (Eq. 55)
= 2TVaBTVyp coss,

But

in which B is the angle between the planes aoB, Boc.

Also

— (VafVay +VayVaB) =— 28 . VaBVay = 2 TVaSTVay cos A,
and

VYoyVyB + VyBVay =28 . VayVyB = — 2 TVayTVyB cos (180°— ¢)
= 2TVayTVyfB cosc,
Fig. 52.
c in which A, B and ¢ are the angles
opposite the edges BC, AC and AB re-
spectively. Hence (b) becomes

—[TV(ca.cB)]*=—(TVaB)?— (TVay)®
o B — (TVyB)
+ 2TVaBTVay cos A+ 2TVaSTVyB cosB

< + 2TVayTVyp cosc.

But (Art. 41, 7th)

TV(cA . CB) = 2area ACB,

and similarly for the others. Hence, dividing by —4,

(areaaBc)®= (area AoB)? + (area Aoc)? 4 (area Boc)? —
2 area AOB area AOC COS A —2 area AOB areaBOC COS B —
2 area AOC areaBOC COSC,

which is the relation between the plane faces and their included
angles.
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If the angles are right angles, then
(area ABC)® = (area A0B)? + (area Aoc)? + (area Boc)®.

24. To inscribe a circle in a given triangle.
Let a, B8, y (Fig. 53) be unit vec-

tors along the sides. Then, Art. 16, Flg. “‘c
the angle-bisectors are AN\
8
z(B+7), /‘Q
—y(r+a), D
z(a—B). A y
Now

z(B+y)=cy—y (v +a)-
Operating with V. (y +a) X

z= cVa )
YyB +VaB +Vay
Hence
= = Yoy
r0=2 )=yl B+,

or, since a, 3, y are unit vectors,

_ csinB
A0=Cina + sinB + sinc B+)-

Squaring, to find the length of A0, we have, since (8+y)*=
—2(1+4cos 4),

_Ao»=—[ csinp c]’2(1+em),

sinA 4 sinB + sin

AO = - cs.mB —+2 (14 cosa),
sinA +4-sinB -+ 8incC
- csinB 2c083A.

sinA 4 sinB 4 sinc

25. If tangents be drawn at the vertices of a triangle inscribed
in a circle, their intersections with the opposite sides of the triangle
will lie in a straight line.
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Let o be the center of the circle (Fig. 54) whose radius is 7,
and 0OA=a, 0B=f, oc=y. Since oA and AP are at right
angles

’ S(oA « AP) =0,
But
AP=AB+BP=AB+yBC=LB—a+y(y—RB);

hence, substituting this value above,

8a[B —a +y(y—B)]=0,
Sa* = 8o + y8(ay — af),

and
7”4+ 8Saf8 . .

y=—- —Sa.ﬂ’

Therefore

OP=O0B+BP=(+yBC=8 — "3+S“B (y—2)

Say — Sa8
_(+ Say)/s L<ﬁ+s«zﬁ>y
—8aB

Similarly, or, by a cyclic change of vectors,

og= (" +8aB)y—(r+ Sﬁv)a
Saf — SBy
or = (" +8By)a— (” +8ay)B
8By —

‘Whence
(Say — 8a3)or + (8a8 — $By) 0@ + (88y — Say)or = 0.
But also
(Say —8af) + (SaB — 88y) + (SBy — Say) =0.

Hence p, @ and r are collinear.

26. The sum of the angles of a triangle is two right angles.
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Let a, 8, y be unit vectors along Bc, ca and aB (Fig. 55).

Then (Art. 42)

2
E:e_ﬁ?,
Y
2y
E:f",
a
, 2
L—€T
B ’ /{ ,/'
But /78
2 20 2 2
E z- E=l=€%€?€—$=€i(¢+o+¢),
Yy B e

Hence g(q& + 0 + ) = an even multiple of 2 (Art. 42), as 2n,
T

as we go round the triangle » times.

In taking the arithmetical sum, or passing once round, we

take the first even multiple of 2, or

2(@+0+9)=4;
o004y =2m,

and the sum of the interior angles is 37 — 27 =, or two right

angles.

27. The angles at the base of an isosceles triangle are equal to

each other.

Let « and B (Fig. 56) be the vector sides
of the triangle, and Ta=TB. Then, if the
proposition be true,

e _x B ,
a—pf B—a

a(a—B)'=KB(B—a)'=(B—a)7B,
a(f—a)=(a—B)B;

.. as = ﬂ2’

or

which is true, since Ta = Tg.

Fig. 56.
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28. To find a point on the base of a triangle such that, if lines
be drawn through it parallel to and limited by the sides, they will
be equal.

Fig. 57. Draw pE (Fig. 57) and pr parallel to
B 2 ¢ the sides. From similar triangles, if
AE = ZAC,
AE _FB AB — AF
T=— = = —_
a AC  AB AB
E whence
1l—2z= A—F-
AB
Now
A AD = AF + FD,

or, since ¥p = AE,
= (1—x)AB + zac.

But, since ¥p is to be equal to Ep,

(1—2)TaB=2Tac=y;
'« (1—2)TaBUAB = yUas,
2TacUAc = yUac,
and therefore
AD = y(UaB + Uac),

and » is on the angle-bisector.

29. If any line be drawn through the middle point of a line
Joining two parallels, it is bisected at that

Fig. 58. . point.
G
30. If the diagonal of a parallelogram
¥ ‘ g 8 an angle-bisector, the parallelogram s a
0 rhombus.
B C

31. In any triangle the sum of the
squares of the lines GH, kE, DF (Fig. 58)
18 three times the sum of the squares of the
D L E sides of the triangle. '

82. The sum of the dngles about two right lines which intersect
is four right angles.
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83. If the sides of any polygon be produced so as to form
one angle at each wertex, the sum of the angles is four right
angles.

34. Find the eight roots of unity (Art. 39).

85. The square of the medial to any side of a triangle i3 one-
half the sum of the squares of the sides which contain it, minus
one-fourth the square of the third side.

85. Product of two or more Vectors.

1. Let g=aB, r=1y. Then, since 8qr = 8rgq,

8afy = 8yaf.
Let ¢=1ya, r=p. Then

8¢r = 8rq = 8yaf = 8Bya;
e Safy=8Bya=8yaB. . . . . . (108),

or, the scalar of the product of three vectors is the same if the
cyclical order is not changed.

This may also be shown by means of the associative law of
vector multiplication as follows :

afy = (aB)y = (S8 +Vap)y.
Taking the scalars

8afy = 8(8af +VafB)y
=8(VaB . y), since 8(8aB.y) =0,

introducing the term 8 . ySa =0,
=8.yVaB+ 8. y8e8

=8 . y(8a8 +Vap)
= 8y(af) = 8yap.
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In a similar manner

SafBy =8 . a(88y +VBy)
=8.aVBy
=8(VBy . a)
= 8(VBy +8By)a
= 8Bya,

SaBy = $fya = Syaf.

S8afBy=8.a(88y+VBy) .
=8.aVBy
=—8.aVyB
=—Sa(VYB+SYﬂ),
. Safy=—8ayB . . . . . . (109),

and, as before,

2. Again

or, a change in the cyclical order of three vectors changes the sign
of the scalar of their product.

3. Resuming

aBy =a(By)
and taking the vectors,

VafBy =Y. a(88y +VBy)
=aSBy +V. aVpy.

VyBa=V(SyB +VyB)a
=V.a8yB—V.aVyB
=V.a8yB+V.aVfy
=V.a(SyB+VBy)
=aS8By+V. aVBy H

‘. YaBy=VyBa . . . . . . (110),

Also

or, the vector of the product of three vectors is the same as the
vector of their product in inverted order.

4. Geometrical interpretation of Safy.
Let a, B, y be unit vectors along-the three adjacent edges 04,
oB, oc (Fig. 59) of any parallelopiped, 6 being the angle be-
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tween a and B, and 6' the angle made by y with the plane aos.
Then
a3 = — cos6 + esind,

€ being a vector perpendicular to the plane Aos.
Operating with x 8 . y

8afBy = 8(— cosf + esinf)y Fig. 59.
= 8(sind . ey). /
ol
But Sey=—cos of the angle i/ 7
between ¢ and y = —siné'; B
. Safy =— sin@sind. of=m== A

Now, if a, B, y represent as vectors the edges oa, 0B, oc,
whose lengths are a, b, c,

8afBy = — TaTpSTy sinf sin '
= — abc sin § sin 6!

But absin @ = area of the parallelogram whose sides are a and
b, and csin@' = perpendicular from ¢ on the plane sos. Hence

— 8SafBy = volume of a parallelopiped whose edges are
a, b and ¢, drawn parallel to a, B and y.

Cor. 1. Whatever the order of the vectors, the volume is the
same ; hence, as already shown,

+ 8afBy = % 8Bya =+ Syaf = F SayB, etc.

Cor 2. If SaBy =0, neither a, B, nor y being zero, then either
=0, or ' =0, and the vectors are complanar.

Cor. 3. Conversely, if a, 8, vy are complanar, SaBy=0.

Cor. 4. The volume of the triangular pyramid of which the
edges are oc, 0B, 04, is — } 8af3y.

5. We have seen that when a, 8 and y are complanar, 8e8y=0,
and therefore a8y is a vector. To find this vector, suppose a
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triangle constructed whose sides aB, BC, cA have the directions
of a, B and y respectively, a vector not being changed by motion
parallel to itself. Since the tensor of the vector sought is the prod-
uct of the tensors of a, B and y, we have to find U(aB.BC.CA),
i.e., its direction. Circumscribe on the triangle aBc a circle and
draw a tangent at A, represented by T'aT. - Since the angles TaB
and BcA are equal, we have

BA
——U =U0—|
CA AT

whence
U(Bc.caA)=TU(aB.AT)[=TU(BA.AT)].

Introducing UaB X
U(aB.BC.CA)=TU(AB.AB.AT)[=U(AB.BA.AT)],
or, since U(aB.BA)=—(U.aB)*=1,
U(aB.BC.CA)=—TU.Ar"=T.Ar.

Hence, if A, B, ¢ are any three non-collinear points in a plane,
or if a, B, y are the sides of a trianglé joining them, in order
(in either direction, since VafBy = VyBa),

aBy, Bya, 7yaB

are the vector tangents to the circumscribing circle at the angles
of the triangle.

Again, if a, B, ¢ are any three points in a plane, not in a
straight line, and « and B are two vectors along the two succes-
sive sides AB, BC of the triangle which they determine, and cp a
vector drawn from c parallel to y, intersecting the circumscribed
circle at p, then is paA parallel to VaBy=38. For

8=“”*=“§”?=aﬂ‘ﬁ"v=—(TB)’aB-Ly=—<TB)’§v,

—2, which turns 8 parallel to —a, turns y into a

direction & = pa, the opposite angles of an inscribed quadrilateral
being supplementary.

whence U .
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If y have a direction such that cp crosses aB, or the quadri-
lateral is a crossed one, it is evident on construction of the

figure that Ud'=TUafy="TU(aDn)=— TUs.

Hence the continued product of the three successive vector
sides of a quadrilateral inscribed in a circle is parallel to the
fourth side, its direction being towards or from the initial point
as the quadrilateral is uncrossed or crossed ; and, conversely, no
plane quadrilateral can satisfy the above formula + U8 = UafBy,
unless A, B, ¢ and D are con-circular. The continued product
of the four successive sides of an inscribed quadrilateral is a

alar, f
scalar, Ior aﬂyS:(aﬂy)S::ts’:q:d’.

Since the product of two vectors is a quaternion whose axis is
perpendicular to their plane, while the product of a quaternion
by a vector perpendicular to its axis is another vector perpen-
dicular to its axis, and so on, it follows that the continued
product of any even number of complanar vectors is generally a
quaternion whose axis is perpendicular to their plane, while the
product of any odd number of complanar vectors is a vector in
the same plane. Hence the formulae

8a=0, SaBy=0, SaBydc=0, etc.,

for complanar vectors.
If, however, the given vectors are parallel to the sides of a
polygon ABc ----- MN inscribed in a circle, then

U(AB « BC o CD «+++ MN ¢« NA)=U(AB « BC « CA) U(AC « CD 4 DA) -+
X U(AM « MN « NA).

But each of the products U(AB . BC . cA) is equal to U . AT,
AT being the tangent to the circle at A. Hence

U(AB « BC ¢ CD ++- MN o NA) = (U . AT)*,

which reduces, according as n is even or odd, to £1 or U, aT.
. Hence the product of the vectors will be a scalar or a yvector
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according as their number is even or odd, and in the latter case
this vector is parallel to the tangent at a.

If the vectors are not complanar, but parallel to the successive
sides of a gauche polygon inscribed in a sphere, the polygon
may be divided as above into triangles, for each of which the
product of the three successive sides is a vector tangent to the
circumscribing circle, all these vectors lying in the tangent plane
to the sphere at the initial point. If the number of sides is even,
their product will be a quaternion whose axis is perpendicular to
the tangent plane, ¢.e., lies in the direction of the radius of the
sphere to the initial point ; if odd, the product is a vector in the
tangent plane.

Hence, if A, B, ¢ and » are four given points, not in a plane,
AB=a, BC=/3, CD =y being given vectors, and p any other
point such that pp =0, PA=p, if P lies on the surface of a
sphere through the four given points, we have the necessary and
sufficient condition
afyop = poyfa,

for each member is equal to minus the conjugate of the other,
and must therefore (Art. 46) be a vector,

6. From Equation (56),
By —vB=2VBy.
Operating with V. a X
2V.aVBy=V.a(By—vB).
Introducing in the second member Bay — Bay,

=V (afy — ayB + Bay — Bay)
= V(af + Ba)y —V(ayB + yaB)
=V.2(8aB)y — V(ay +7y2)B

VeaVBy=vy8aB—B8ay . . . . (111).

Hence
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This formula may be extended. Thus, for a write Vad, and

OB Y. VabVBy =8 (Vad) B — AS(Vad)y,
Y.VaSVBy=ySadB—BSaly . . . . (112).

An inspection of this formula shows that it gives a vector
complanar with y and 8. Moreover, since

V. VadVBy = V. VyBVad = 88yBa — a8y8,
it is also complanar with ¢ and 3, and is, therefore, parallel to
the line of intersection of the planes of a, 8, and B, y.
Similarly
V.VByVad =38Bya — aSByS =—V.VadVBy . (113).
Adding Equations (112) and (113)
08Bya — aSBy8 + y8adB — BSady=0 . . (114),
3808y =aS8By8 —B8ayd +y8aBS . . . (115),

a formula expressing a vector 3 in terms of any three given di-
planar vectors, a, 8, y; so that, if

or

SByS:b, —&78:8708:0, Saﬁ8=a, &By:m,
S=m"1(ba + ¢B + ay).

7. Resuming Equation (111), and adding «8By to both mem-

bers,
i V. aVBy + a8y = y8af8 — Bay + aSBy,
whence
Voa(88y+VBy)=
VafBy=a8By — BSay+vy8aB. . . . (116).

The form of this equation shows that a and y may be inter-
changed, or that VaB8y = VyfBa, as already shown.
Again, replacing a by VoS in Equation (111),

V. VaBVBy = y8(VaB)B — BS(VaB)y,
VeVaBVBy=—f8By . . . . . . (117).

or
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8. Writing Vy3a8 first as Y(y « 8af3), and then as V(y8 . aB),
we have

V(7 + 8aB) =V . y(83af +V3ap)
=838 +V. yV3af *
[Equation (116)] = y8aB3 4 Vy38aB —VyaS38 4+ VyB88a. (a)
V(78 « o) =V (8yd +Vy3) (8a +Va8)
= Vy88af +VaB$yd +V . Vy5Vaf

= Vy38af8 +Vaf38y8 —V . Va3,
or, Equation (112),
= Vy38a8 4 VaSSyd — 88aBy+ ySaB. ()

Equating (a) and (b),
88afy = VBy8ad 4 VyaSB5 +VaBSyd . . (118),

a formula expressing a vector & in terms of three other vectors
resulting from their products taken two and two; so that, if
Sofy=m, 8ad=a, 88 =10, Syd=c,

3=m"1(aVBy + bVya + cVap).

Operating on Equation (118) with 8 « p X, we obtain, since
S . pVya = Spya,
Sp8SaBy — 8B8Spya — 8adSpBy — 8y38pa =0,
803y — 8B38ypa + 8y3%paf8 — 8p38aBy =0 . (119),

a formula eliminating 8.

or

56. Hxercises.

Prove the following relations :

1. 8aBy8=S8aBy.
2. aff « By=—uay.
8. dff=apf . Ba.
4. 8. VafVBy=8.a8VBy . . . . . . . . (120).
5. SafByd=80B8y8 —8aySB8+8a88B8y . . . . . (121),

from which show that SaB8y8 = 8Byda.
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6. 8.VafVyd=S8a08By—8ay8B8 . . . . . . (122).
7. 8(a+8)(B+7) (y+a)=28afy.
8. aBy+ yBa=2Vafy.
9. afy — yBa=28apy.
10. V(a¥@y +BVya+9yVaf)=0 . . . . . . (123).
11. VaBy + Vyaf =2y8ap.
12. aVBy + BVya + yVafS = 8 8afBy.
13. 8. VaBVByVya= — (SafBy)*.

14. 8.yVBa=yBa—y8Ba+ BSya—aSBy . . . (124).
15. 8. V(VeBVBy) V(VByVya) V(VyaVafB) = — (SafBy)*.
16. S[VaBVy8 + VayVoB + VadVBy]=0 . . . . (125).

17. If 8aBy=m, 8ap =10, 88p =0, 8yp =0, show that p=0.
Conversely, if p is not zero, then 8z8y = 0.
18. Interpret p = a~'Ba.

‘We have first, directly,
Tp =18,

8apf = 8aa~Baf = 8Baf =8F%=0;
.*. py @ and B are complanar.

Sap = Saa~'Ba = 86,
— TpTa cos = — TaTf cos ¢,

or, since Tp = Tf3, cosf = cos ¢. .
Similarly Vap = YBa, and sinf =sin¢. Hence
0=¢,
and a bisects the angle between 8 and p.
19. Show that p = afa~! = a~?(8a — Vap).

20. p being any vector, show that V . YapVpB = wp.
21. If 8af8 = —a?, show that a is perpendicular to 8 — a.
B,

22. What are the relative directions of « and B, if KE; ===
1t -2

k)
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57. Examples.

1. The altitudes of a triangle intersect in a point.
Let (Fig. 60) aAc=p, cB=a, AB=1.

¥ig. 60, Then vectors along c'c, B'B and A'a are
c
8 &, —e¢8, —ea
A,
5 respectively. Now
A0 = AC 4 00 = AB + BO,
A y ¢ B Or

B—zey=y+yp.
Operating with X 8 . 8, we have, since ySe8?=0,

x:_iag.
SeyB

Having assumed o to be the intersection of the altitudes BB'
and cc) let o' be the intersection of aA' and cc. Then

40' = Ac +co,
or
zea = —2'ey.

Operating with X 8 « @

,  SBa  SBa
e =Seya=S—¢%‘y
— SBa = Sq8
S(y—Rer —8Be
— SaB-
SeyB

Hence o and o' coincide, and

=g+ 3B,
A0 B+S¢yﬂq
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2. To circumscribe a circle about a triangle.
Let (Fig. 61) Ac=p, cB=4qa, AB=1}.

Then Fig. 61.
A'0 = — Zea, c
c'o = yey,
B'o = — 2¢f. » o
Operating with x 8 . B on the expres- &
sion y
A0=4y+yey=48—2zB, A ] B
we have
gy SaB_
28¢/pB

Operating with X 8 . a on
BO'=—3}y+Yey=—4a—2eq,

y'= Saf - S8 .
28eya 28¢yB

we have

Therefore y = y' and o and o' coincide.
The radius may be found by squaring

= =1y S
so=}y+yey =4y 38eB"
whence
o ¢ Ea’h® cos®c

since, if a, b, c are the tensors of a, B, v,

y_ &
1= 7
S(3y.yey)=0
¥ )’=-—,c’ a’b’cos’c'
v " AP sin’a

Hence
Vésin’a +alcos’c . a

R= — =
2sina 2sinaA
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8. In any triangle, the centre of the circumscribed circle, the
intersection of the altitudes and the intersection of the medials lie
in the same straight line; and the distance between the last two
points is two-thirds of the distance between the first two.

Let m (Fig. 62) be the intersection of
Fig. 62. the medials, A’ that of the altitudes, and
¢ the center of the circle.
Then, from Ex. 5, Art. 11, where cp
(Fig. 11) is given in terms of the adjacent
sides, we have

From Ex. 1, Art. 57,

=g 438
A B+s€ypey.

From Ex. 2, Art. 57,
Ac=H(y— ;l;fy)-

But

CM =AM —AC=48— 5-74.%_2
and

wa'=an'—aw= 48— dy + ey

.. MA'=2cm,

and, since, as vectors, they are multiples of each other, and have
a common point, they form one and the same straight line.

4. To find the condition that the perpendiculars from the angles
of a tetraedron to the opposite faces shall intersect.

With the notation of Fig. 52, the perpendiculars from A and B
on the opposite faces are

VBy and Vya.

If they intersect, at P say, then must 4, B, P lie in one plane.
Hence, Art. 55, 4, Cor. 3,

8[(B—a)VByVya]=0,
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or
S(B—e)[8. VByVya+V . VByVya]=0,
S8(B—a)V. VB'yv‘ya =0.
Fig. 52 (bis).

But, Equation (117), ¢
V. VByVya =— y8Bya;
'« — (8By —8ay)8Bya =0,
88y=8ay. (a) o B
From the figure, we have
BCl 4 o0al=(y—B)*+ 4
=7 =288+ +d
or, from (a), =y —28ay +p+a

=(y—a) +
= AC® 4 0B,

or

Hence the condition is that the sums of the squares of each par
of opposite edges shall be the same.

5. Interpret Equation (118),
88afBy = VBy8ad + VyaSA8 + VafSys,

under the condition that a, 8, y be complanar with 8.
If a, B, y are complanar, 8afy =0, and therefore, 3 being in
or out of the plane,

Sa8VBy ,+ SB8Vya + 8y3VafB = 0. (a)

If 8 be in the plane, we have for any four co-initial lines
0A, OB, 0C, OD,

8in BoC o8 A0D + 8in COA cos BOD + 8in A0B cos cop = 0,
and, for a line perpendicular to op,
sin BoC sin A0D + 8in coA sin BOD 4 8in A0B sincop = 0.

If & is perpendicular to the plane, the terms in (a) vanish
separately.



112 QUATERNIONS,

6. If X, Y, Z be the angles made by any line op with three
rectangular axes, then

cos? X 4+ cos?Y +cos?Z=1.
From Equation (67)

ip=xi’+yij+zik=—m+yk—zj,
whence
(8ip)* =2

Operating in a similar manner with 8.;jx and 8.%X we obtain
— = (8ip)* + (§p)* + (Sko)™.
If Tp=r, then p*=—1%, Sip=—rcosX, etc. Hence

op? = op* (cos’ X + cos® ¥ + cos? Z),

or
cos? X + cos’Y 4+ cos?’Z=1.

Applications to Spherical Trigonometry.

Let aBc (Fig. 63) be any spherical triangle on the surface of
a unit sphere whose center is 0; a, 8,y
being unit vectors from o to the vertices.
The sides AB, BC, CA represent versors
whose angles are c, a, b, and axes are
oc'=1y, oA'=a, OB'=p0'; a, B ¥
being unit vectors to the vertices of the
polar triangle whose sides are a; b) c;
the supplements of the opposite angles
A, B, c of the triangle aBc.

. @
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Taking the scalars, we have [Equation (90)],

88 _sBs2 5. vEy2
Y a v e v
But
S€=eosa, S8-=cosc, 8-=cosbd,
and
ﬁ e s ! $ }
S.Y;V;-S(smc.y)(smb.ﬁ)

=gincsinb Sy'8'
= — sinc sind cosa'

= sinc sind cosA.
Hence, in (a),

cosa = cosc cosb + sinc sinb cosa.

By a cyclic permutation of the letters in (@), we obtain

Y_Y ﬁ b
1-3 % ®)
Whence, as before 8
Y_gYsf 1 5.v2vE
S; B a.+ Bva,
or
cosb = cosa cosc + sina sinc 8a'y/,
in which 8a'y' = — cosd’' = cosB.
*. cosb = cosa cosc + sina sinc cosB. (©

Similarly, or directly by cyclic permutation in (c),

cosc = cosb cosa + sinb sina cosc.

From the relation
B' ! BI al
y=ay

may be deduced in like manner

— COSA = CO8C cOSB — 8incC sinB cosa.
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.

8. Resuming the equation
B
Y

8l
I

of the last example, and taking the vectors, we have [Equa-
tion (91)1,

vBosBveisivE Ly . vEve (@)
14 ey Y ¢ e 7
But
Vg:—a'sina,
Byo et A . '
S-&V;_ cosc (B'sind) =coscsinbd . £}
a_pB . .
S;V;=eosb (y'sinc) = cosbsinc . y}
V. vgvg = V(y'sinc) (8'sinb) =sinc sinb Vy'8'

=sgincsinb(—asina') = —sincsinbsina . a.
Substitating in (a),
—sina . a'=coscsind . B'+cosbsinc. y'—sincsinbsina ca. (D)
Operating with X 8 . ¥,
U ! 4 .
—sina . S:—',= coscsian% +-cosd sincSZ—:,—sinc sind sinASi,,
in which
a ,
87=co§b = — COSB,
!
8%=—oos.;,.

8 $ =0, since a and y' are at right angles.

Hence
sina cosB = cosb sinc — cosc sinb cosa,
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and in the same manner, or by a cyclic permutation of the letters,

sind cosc = cosc sina — cosa sin¢ cos B,
sinc cos A = cosa sinb — cosb sina cosc.

9. Operating on Equation (b) of the last example with
X V . ‘y,—l instead Of X S . 7'-1,

] 4 !
—sinaV ‘i, = cosc¢ sinbvé, +cosb sichY—, — sinc sind sinAVg,-
Y 7 . Y Y
But
'
V:7=,88inb'=,3sinn,
'
v

=— asina' = —asina,
Y
Y

- =

V5=0.

-l

2

Substituting these values
—sinasinB.B8=—coscsinbsinA.a
—sin csinbsinA.VE;
Y
Operating with X a1, and substituting for
/—3 =cos ¢4 y'sinc
a Y ?
we obtain
—sina sinB cos¢c — sina sinB sinc . y' = — cosc sind sina
—sincsinbsina . 4.
Equating the scalar or vector parts, we have in either case
sina sinB = sina sinb,
or
sina:sinb:: sina: sins.
The formulae of the preceding examples have all been deduced

from the equatio §=§ ;- The product as well as the quotient
may also be employed, as follows :
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10. Assuming the vector product

YaBVBy,

and taking the vector part, we have [Equation (117)],

V. VoBVBy = — [SapBy. (@)
But

Y . YaBVBy = V(y'sinc) (a'sina)=sinc sina sins . B,
and, Art. 55, 4,

8afy = — sinc sin6)
#' being the angle made by oc with the plane of ¢. Substituting

in (a),
sinc sina sinB . B=sincsinf’ . B,

Fig. 63.

or .
8in@' = sina sins.

By permutation, from (a),
Y . YyaVaf = — aS8yef = — aSafy,

sind sinc sinA . a =sincsing' . a,
.*. 8in@' =sinb sina.

Equating these values of sin@, we have, as in Example 9,
sina : sind:: sina: sins.

11. Let p,, ps, p. represent the arcs drawn from the vertices
of ABc perpendicular to the opposite sides.

Resuming Equation (a) of the preceding example, and taking
the tensors,
TV . VafVBy = Safy = sinc sin p,,
= 8fya = sina sin p,,
= SyaB = sinb sin p,,
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and, taking the tensor of V. VaBVBy from the last example,

sinc sina sinB = sina sin p, = sinb sin p, = sinc sin p,,
or
sin p, = sinc¢ sinB,
. sincsina .
sin p, = ————sinB.,
sind

sin p, = sina sinB.

12. Show that if aBc, A'B'C’ be two tri-rectangular triangles on
the surface of a sphere,

cos AA' = cos BB' coscc' — cos B'C cos BC,

the triangles being lettered in the same order.
Let a, B, v, a; 8, ¥ be the vectors to the vertices. These
being at right angles, in each triangle, we have

cosAA' = —8aa’'=—8 . YByVBYY
or, Equation (122),

cos s’ = 8383'Syy' — 88'y8By'

= cos BB’ coscc’ — cosB'c cosBC,

[The vectors of Equation (122) are arbitrary, but we may
divide both members by the tensor of the product of the vectors,

80 that
8(VUeBVUyS) =8UadSUBy — SUaySULAS,

for the unit sphere.]

13. Let ABcD be a spherical quadrilateral whose sides are
AB=a, BC= b, CD = ¢, DA =d, the vectors to the poles of these
arcs being a; B! v &' respectively. Then

Yo =d'sina,
Yy8 = y'sinc.
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From Equation (122),

8 . YafVyd = BadSBRy — 8ay8f3,
or

sina sinc 8a'y' = (— cospa) (— cosBC) — (—cos DB) (—cos AC).

But 8a'y'=— cosL, L being the angle formed by the arcs aB
and cp where they meet, the arcs being estimated in the
directions indicated by the order of their terminal letters.

Hence
Sin AB Sin CD COSL = COS AC COS BD — COS AD COS BC,

a formula due to Gauss.

14. Retaining the above notation, ABcp being still a spherical
quadrilateral, denote the angles at the intersections of the arcs
AB and cp, AcC and DB, AD and BC, by L, M and N respectively.
Then, from Equation (125),

S[VaBVy8 + VayVép + VadVBy]=0,
we have identically

sin AB sinCD cosL 4 sin AC sin BD cos M 4 sin AD sinBC cosN = 0.

Were the points 4, B, ¢, D on the same great circle, the angles
L, M and N would be zero, and the above reduces to

sin AB sincp 4 sin AC sinBD + 8in AD sinBCc = 0,

and for a line 04, perpendicular to oA and in the same plane,
dropping the accent, we have

COSAB 8incCD + cO8 AC sin BD + coSAD sinBC = 0,

which are the results of Example 5 of this article.
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58. General Formulae.

1. We have seen, Equation (86), that 8% =38 and V= =3V ;
but (Art. 50, 4) that ST is not equal to TS, nor U to US. We
have also seen, Equations (96) and (97), that TII =IIT and
U0 =1IU; but SII is not equal to IS, nor VI to OV: for,
1st, SH is independent of the factors under the I sign, provided
the product remains the same, while IIS is dependent upon
them ; and, 2d, because (Art. 55, 5) IIV is not necessarily a
vector.

2. Resuming Equation (92),
8rg = Sgr,

and, since 7 is arbitrary, writing rs for 7, we have, by the asso-
ciative law (Art. 52),
8(rs)g =8q(rs),
8r(sq) =8(sg)7,
. Srsq=S8sqr=8¢rs. . . . (126),

a formula which may evidently be extended. Hence, the scalar
of the product of any number of quaternions is the same, so long
as the cyclical order is maintained.

8. Let p, q, 7, 8 be four quaternions, such that

) . qr = ps. (a)
Operating with Kg X, .

Kg.gr=(Kq.q)r=(9Kg)r =Kq. ps,
since conjugate quaternions are commutative. Hence

(Tq)*r =Kgq « ps,
or

Kq . ps 1
’l‘=—(qTT§)2-=Rq.ps=§cps . . . (127).
Operating on (a) with X Kr, we have

qro KT=p8 . KT,
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or
q('l‘r)2 = psKr,

ps 1
S g= (Tr)z pSRT=p8; o o . (128).

Hence, in any equation of the products of two quaternions,
the first factor of one member may be removed by writing its con-
Jjugate as the first fuctor of the second member, and dividing the
latter by the square of the tensor, or simply by- introducing the
reciprocal as the first factor in the second member. By substi-
tuting the word last for first, the above rule will apply to the
second transformation.

4. Resuming, for facility of reference, the equations

g= ﬁg_TB (cos ¢ + esing) =Tq. Ug =89+ Vg, (4)
qg'= % = g (cos¢ — esing), (B)
=—(cos¢— esin ¢) = Sqg — Vg, ©)

we observe directly that

8¢g=8(Tq.U¢)=Tq.8Uq . . . (129),
Vq=TVq. Uvq=Tq.qu . . . (130),
TVg=Tq.TVUg=TVKqg . . . . (131).
5. It has been already shown (Art. 54, Fig. 40) that
(Ta)?+ (TB)*=(Ty)? and (Art. 54, Fig. 42) that Ta=Ty . cos ¢,

TR =Ty.sin¢; and therefore

(Ty)* cos* ¢ + (Ty)*sin’p = (Ty)%,
sin’¢ + cos’¢ =1.

or

Hence, from Equations (44),
(8Uq)*+(TVUg)’=1 . . . . (132).
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This important formula might have been written at once by
assuming the above well-known relation of Plane Trigonometry.

6. From Equations (129) and (131), we may write Equa-
tion (132) under the form

(S9)*+(TVg)*=(Tg)* . . . . . . . (139),
or, from Equation (107),
(89)*—(Vg)*=(Tq)* =(8¢)* +(TVq)* . (134),

since € =—1.
7. Comparing (4), (B) and (C),
1
SUg=S8U_=SUKg . . . (135),

1
TVUq=TVUE=TVUKq . . (136),
and from-Equations (129) and (135),

1

8. Since Tq = TKgq, we have
Tg.TEKg=(Tg)? . . . . . (138),

and Tq being a positive scalar,
KTg=TKq . . . . . (139).

As exercises in the transformation of these and the following
symbolical equations, some of the results already obtained will
be deduced anew. Thus, to prove that T(gq') = TqTq', whence -
T . ¢*=(Tq)? we have

(Teg")*=(g9")K(99") Equation (107)
= 99'Kq'Kq Equation (99)
= q(¢'Kq") Kq = (Tg')*qKq
=(Tq")*(T9)’,

.. Tqq' =TqTg:



122 QUATERNIONS,
9. Substituting for 8¢ and TVq their values from Equations
(79) and (131)
(SK9)* + (TVKg)*=(8¢)* +(TVg)* . . (140).

10. Resuming from Art. 51, 1, the expressions

Yrq=8rVq 4+ 8qVr+ V. VrVg, (a)
Ygr =8qVr 4+ 8rYqg+ V. VgVr, )
Sqr =8¢Sr +8 . YgVr, (c)

we have, by adding and subtracting,

Ygr + Vrg = 28qVr + 2SrVq} (141).
Ygr —Vrq=2V.VgVr
And, if g=r, from (a) and (¢),

Y. g =28¢Vg
s A

¢=(8¢)"+28¢Vg +(V9)* . . . (143).
Dividing Equations (142) by (Tg)*
SU . ¢ =(SUg)* +(VUg)*
YU . ¢ =28Ug . VUq } SR G
since, evidently,

§.q'=(Tq)*SU . ¢
V.q’=(’l‘q)’VU.q’} C e . (4B).

Again, substituting in the second of Equations (142) the value
of (Vg)? from Equation (134), we have

S.¢8=2(8¢)—(Tg)* . . . . . (146),
and dividing by (Tgq)?

whence

SU.q¢?=2(8Ug)*—1 . . . . . . (147).
Substituting (S¢)? from the same equation .
S.¢°=2(Vg)*+(Tg)* . . . . . (148).
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Equations (146) and (148) may be written

(8+T)¢'=2(8¢)" and (8—T)¢'=2(V9)"

Introducing in (@), or (b), the condition that g and r are
complanar, we have, after substituting versors,

YUgr = YUgSUr + YUrSUg,

since, under the condition, V(VUqVUr)=0.
Taking the tensors, since ¢ and r are complanar,

TVUqr = TVUqSUr + SU¢TVOr . . . (149),
and, interpreting, Art. 51, 6,
sin(0 + ¢) = 8inf cos ¢ + cos @ sin ¢.
Introducing the same condition of complanarity in (c)
Sqr = 8¢8r — TVqTVr,
or, substituting versors as above,

SUqr = SU¢SUr — TVUqTVUr . . . (150),
or, interpreting,
cos (0 + ¢) = cosf cos ¢ — sin¢ sinh.

11. Putting Equation (146) under the form
S.¢°+T.
sq = »\1—2"—q’1

and writing Vg for ¢, we have
SVg=v¥Sq+Tg) . . . . (151).

12. Taking the tensors of the first of Equations (142), we have .

TV. ¢*

TVg= 28¢

)
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and writing Vg for ¢
TVq
TV . va = 2—8 '\/6’
or, by Equations (133) and (151),

(Tq)* —(89)*
TV. ﬁ:-}—d T(Tg F Sq) ’

TV.Vg=VETg—Sg). . . . . (152),

whence

and

(TV : 8)\/g = \qu+Sq « e e e . (158).

18. From the definition of the powers of a quaternion, we have
gmg"=1, (¢%) =¢~ . . . . (154).
Hence, since ¢=Tq . Ug, TII =IIT and U =1T,
Tg™.Tg"=1, Ug™. Uq"‘= 1 . . (15%).
Also, because Ug—™ = UKg™,
g "=Tq™.Ug™=Tq™ . UKg"™ = Tg"*"Kq™,
or, since Kpq = KqgKp, writing pq for ¢, and making m =1,

(r9)™ =T(pg)*Kpg = T(pq)*KqKp
=T(pg)*(Tg)*(Tp)*q~'p~"

(p)'=qp? . . . . . (156),

the reciprocal of the product of two quaternions being equal to the
product of their reciprocals in inverted order. ‘

This formula may be extended by the Associative principle, by
a process similar to that employed in the deduction of Equation
(126), so that if I1' represent the product of the same factors as
those of II, in reverse order,

Or

(Hq)“:}]'q“ e e .. (157
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The equation Kpg = KgKp may be deduced without reference
to spherical arcs. For, by Art. 44, any two quaternions can be

reduced to the forms ¢ = B, p= %, whence
a

Y

a

pg=-, OF Pge.a=y, pR=y,

and therefore
Kp .y=Kp . pB=(Kp . p)B=(Tp)'B.

(EgKp)y = Kq(Tp)*B=(Tp)'Kq . B
= (Tp)*Kq . ga = (Tp)*(Tqg)*a =(Tpg)’a
=Kpg.pqg.a =Kpg.y

*. Kpg = KqKp,

Now

which, by the Associative law, gives
KO=I'K . . . . . . (158).

14. Show that K(— q)=—Kq.
15. Show that
T(p+9)*=(p+9) (Kp +Kg)
= (Tp)*+(Tq)*+ 28 . pKq

=(Tp)*+ (Tq)* + 2TpTgSU . pKg
=(Tp+Tq)* — 2TpTq(1—-8U . pKg),

and therefore that T(p+ ¢) cannot be greater than the sum or
less than the difference of Tp and Tq.

16. Show that qUVqg~! = TVq — 8qUVq.

8§9. Applications to Plane Trigonometry.
1. For formulae involving 26, let
g ="Tq(cos26 + esin20).

Then
‘\/&: q'= \/'l_‘d(coso-i- tsin0).
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From Equation (142), 8 . ¢*=(8¢)? + (Vq)?, we then have
8¢ =(8¢')*+ (Vg%
or, dividing out Tgq,
8Uq = (8Uq")* +(VUq')*;
and, interpreting, )
) cos 26 = cos*d — sin®4.

Again, from Equation (147), SU . ¢*=2(8Uqg)*—1, ‘
SUg=2(8Uq¢')*—1;
whence ‘
cos26 = 2cos? — 1.
Again, from Equation (142), V. ¢*= 28qVq,
Vg =28¢'V¢',
or, dividing out Tq and ¢,
TVUq = 28Uq"TVUq' ;

whence
8in260 = 2 cosf sinf.

2. Resuming Equations (149) and (150),

TVUqr = TVUqSUr 4 SU¢TVUr,
SUqr = SU¢SUr — TYUqTVUr,

which have already been interpreted as the sine and cosine of
the sum of two angles, and writing for

r="Tr(cos¢ +esing), r'= %(cos#; —esing),
q and r being complanar, we have
TVUqr~! = TVU¢SUr — SUGTVUr . . (159),

SUgr~! = SU¢SUr + TVUqTVUr . . (160),
or, interpreting,

sin (0 —¢)¥- sin @ cos ¢ — sin ¢ cosé,
cos (6 — ¢) = cosf cos ¢ + sin@ sin ¢.
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3. Adding Equations (149) and (159),
TVUgr + TVUqr-! = 28UrTVUg,
in which, if gr=p, gr'=t, ... ¢ =Vpt, r=pt-!(Art. 58, 8),
TVUp + TVU: = 28U(Vpi ) TVO(Vpt) . (161),
o sinz + siny = 2cos 4 (x — y) sin4(z + y).
Similarly, by subtracting the same equations,
TVUgr — TVUgr~! = 28Uq¢TVUr, .
TVUp — TVU = 28U (Vpt) TVU(Vpt?) . (162),
sinz — siny = 2cosd(z + y) sin4(z —y).

4. From Equations (150) and (160), by addition and sub-
traction, we obtain, in a similar manner,

N SUp + SUt = 28U(Vpt)SU(Vpt?) . . . (168),
an

SUp — SUt = — 2 TVU(Vpt) TVU(Vpt7),
whence

cosz + cosy = 2cos4(x +y) cos4(z —y),

cosy — cosz = 2sin §(x + y) sin 4 (z — y).

5. Resuming Equation (152),
TVVg=V}(Tg —8q),
it may be put under the form
2(TVUVq)*=1-—8Ug,

28in’4 6 =1— cosf.

or

and, in a similar manner, from Equation (151),

S\/§= Vv %(SQ"'TQ ’
2(SUVq)*=8Ug +1,

2cos?$6 =1+ cosf.

or
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6. From Equation (142)

. _ 284TVq
IV ¢ = st v
_2TVq (89)?
=8¢ G- @ve
_2(TV:8)q
=TV )

or
tan20=_2tand

1—tan®g
And, in a similar manner,
t20 —1
cot20=220_""
2 cotd

7. From Equations (90) and (91), g and r being complanar,

Sgr =8¢Sr + 8 . YgVr = SqSr — TVqTVr,
TVgr = SqTVr + SrTVq,

we have, by division,
SqTVr 4+ S$rTVq
TV: = 2
IV 8)ar = & S —Tvgrvr
__ (TV:8)r4+(TV: S)q
T 1—(TV:8)q(TV: S)r

or
tan¢ 4 tand

tan(0 + ¢) = 1—tan¢ tanf’

vt (TV 2 8)g —(TV: 8)r
IV )™ = {1V : §)g TV T 87"
or
_ 4y tanf —tang
tan(0—¢)= 14 tanftang

8. Adding and subtracting

TVp TV

(TV:8)p = o (TV:S)t:E,
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we have

(TV:S)p + (TV:8)¢

_ TVpSt + TViSp _ TVUpSUt + TVU!SUp
Spst SUpSUt

Hence, from Equations (149) and (159),

TYUpti!
SUpSUL’

(TV:S)p+ (TV:8)t=

or

tanz + tany = S0 (ZEY),

CosSZ cosy
By a similar process,
cotx + coty = m—(ﬂ
sinz siny

9. From Equations (161) and (163)
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whence (TVU : SU)Vpt = (TV : 8) Vpt = T;g__%_;‘;?t,
or tand(z +y) =%‘::_%;f

And, in a similar manner, from Equations (162) and. (163),

—~ _ TYUp—TVUt
) Vptl=— T ———
(TV: 8) Vpt SuUp + SUt ’
or .. .
¢ *(z_y)=smz—smy

COSZ + COSY
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10. Similar formulae may be deduced for functions of other
ratios of an angle. Thus, from Equation (90), writing rs for
r, and making ¢ =7r=s3 all complanar, we have, by Equation

(142),
§ .« ¢*=(8q)* — 38¢(TVg)",

c0s8 30 = cos®d — 3 cosd sin®,

or

or, under the more familiar form,

co83 6 = 4 cos®d — 3 cosd.



CHAPTER IIL

Applications to Loeci.

60. Any vector, as p, may be resolved into three component
vectors parallel to any three given vectors, as a, 8, y, no two
of which are parallel, and which are not parallel to any one

lane. Thus
P u p=2}a+yﬁ+2‘y e o o o @ (164)

refers to any point in space.

If the variable scalars z, y, # are functions of two independ-
ent variable scalars, as ¢ and u, p is the vector to a surface,
which, if the functions are linear, will be a plane. We may,

therefore, write
? p=¢({,uw) . . . . . . (165)

as the general equation of a surface.

If z, y and z are functions of one independent variable scalar,
as t, p is the vector to a curve, which, if the functions are
linear, becomes a right line. We may, therefore, write

p=¢® . . . . . . (166)

as the general equation of a curve in space.

If a, B, y are complanar, we may replace either two of the
vectors in Equation (164) by a single vector, in which case
p=¢(t) contains but two variable scalars, functions of ¢, and
is the equation of a plane curve, or of a straight line if the func-
tions are linear.

The essential characteristic of the various equations of a
straight line is that they are linear, and involve, explicitly or
implicitly, one indeterminate scalar.

181
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61. Assuming
S p=2%a+YB, (a)

in which « and y are variable scalars, functions of a single vari-
able and independent scalar, as £, as the general form of the
equation of a plane curve, by substituting in any particular case
the known functions = f(¢), y=71'(t), or x=/"(y), we may
avail ourselves of the Cartesian forms and apply to the resulting
function in p the reasoning of the Quaternion method.

For example, suppose o and 3 are unit vectors along the axis
and directrix of a parabola, the origin being taken at the focus.
In this case we have the Cartesian relation

¥'=2pz +p’ ®)
or, substituting in (a),

p=-2—1;(y‘—p’)a+y/3,

as the vector equation of the parabola.
Or, again, a and 8 being any given vectors parallel to a diam-
eter and tangent at its vertex,

p=ters ®

is the vector equation of a parabola, in terms of a single inde-
pendent scalar £.

62. Let f(«) be any scalar function as, for example,
F@=a.
alf(2)]=2zdz=[f"()]d=-

If, however, f(q) be a function of a quaternion g, as, for
example, in the above case,

fO=4

(g +dg)=(q+dg)*= ¢+ qdg +dq . ¢+ (dg)*,
S Alf(9]=q9dg +dg . q,

Then

then
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which cannot, however, be written 2¢dg, because of the non-
commutative character of quaternion multiplication. We can-
not, therefore, write, in general,

alf(@l=L0r'(o]ldg,

or form, as usual, a differential coefficient. Since vector, as
well as quaternion, multiplication is non-commutative, the same
is true of the differentiation of a function of a vector. Thus, if

Sp)=p",
dlf(p)]=pdp+dp « p,

and in order to write d[ f(p) 1=[f"(p)]dp, it would be necessary
to determine a vector o, such that ¢dp =dp . p, or

o=dp . pdp~!,
or, if ¢ be the versor of dp, since the tensors cancel,
o= cpe'l H

that is (Art. 56, 18), we must have p, ¢ and o complanar, or
VYeo = Vpe. Since complanar quaternions are commutative, if g
and dg are complanar, or if dq or dp is a scalar, this peculiarity
of quaternion and vector- differentiation disappears. In this
case, dg and dp being scalars, f(q) or f(p) are quaternion or
vector functions of scalar variables, to which the ordinary rules
of differentiation are applicable. In fact we have only to assume
such a function, as

p==2"a' +2"a" + z"a" 4 ..... = Zxa = (1),

in which o', a", @', «-... are constants and the only variables are
the scalar multipliers, to see that the vectors o', 2", @' .-... are
to be treated as constants and the usual rules of differentiation
applied to the scalar coefficients.

Such equations, then, as those of the parabola, () and (c),
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Art. 61, in which « and B are given constant vectors, may be
differentiated as usual. Thus, from

t!
P=§a+ B,
we have
%:ta-l— B.

p and p' being any two vectors to the curve,
P'—p=Ap

is the vector secant; so that when p and p' become consecutive,
and the secant a tangent,

dp = (ta + B)dt

is a vector along the tangent to the curve at the point corre-
sponding to ¢t. The vector to this point being -g a+tB, and z

any variable scalar, we may write the equation of the tangent
line at that point

=ga+tﬁ+w(ta+ﬂ) ;
for any given point, = being the only scalar variable.

63. It has been seen that the usual definition of differential
coefficients is inapplicable to quaternions in general, for this
definition involves the commutative property of multiplication,
which is not, in general, true of quaternions, nor of the vectors
to which they may degrade. It becomes necessary, therefore, to
give a definition of differentials which shall not involve this prop-
erty, yet which shall also be true of quaternions which degrade
to scalars, and therefore be equally applicable to ordinary scalar
quantities.

If p=s(q), such a deﬁmtlon is involved in the formula

dp=" [ flg+nldg) —f(@)] - . (167),
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for, let f(q, 7, 8, -~)=0 be any relation between a system of
quaternions ¢, 7, 8, .-, and let Ag, Ar, As, ... be finite and
simultaneous differences, so that ¢ +Agq, r+Ar, s+ As, -
satisfy the relation f(g, 7, 8, ----)=0. Then in passing from the
new system g+ Ag, . to the old system g, ..., the simul-
taneous differences can all be made to approach zero together,
since they all vanish together. If, while these differences Ag,
Ary e thus decrease indefinitely together, they be all multi-
plied by the same increasing number, n, the equimultiples nAg,

NATy oeee may tend to finite limits, and these limits are defined
to be the simultaneous differentials of the related quaternions g,
Ty 8y seeee , and are written dg, dr, ds, ... Simultaneous differ-

entials are, therefore, the limits of equimultiples of simultaneous
decreasing differences. If, then, in Ap=f(¢+Aq)—f(q),
while the finite differences A p, A g be indefinitely decreased, they
be multiplied by a number, =, ultimately to be made infinity,

so that
nAp=n[flg+249)—f(2)],

and we pass to the limit, writing dp for nAp, and dg for nAgq,

we have .
dp = 1mmit n[f(q + %) -f (q)]’

a formula for the differential of a single explicit function of a
single variable.

If Q= F (g, 7y o),
dQ =" [ F(g4ntdg, r4n-ldr, .. )—F(g 7, )] (168).

In these formulae, dg, dr, ..... are any assumed variables, no
reference having been made to their magnitudes, and n any
positive whole number conceived so as to tend to infinity. To
show that these differentials need not be small, as also the ap-
plication of the formula to the differentiation of ordinary scalar
quantities, let

y=2
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then
Y+Loy)=(@=+A);

whence, as usual,
Ay=2sAz+(A2)}

or, n being a positive whole number,
nAy=2zn Az +n'(nAx)’

If, now, the differences Ay and Az tend together to zero,
while n increases and tends to infinity in such a manner that
n Az tends to some finite limit, as a, we have, for the other
equimultiple n A y,

nAy=2za+n'd.

But, since a, and therefore a?, is finite, n~'a® tends to zero,
and, at the limit, n Ay =2za. Hence the limits of the equi-
multiples » A ¢ and » A y are respectively a and 2za, and
dr=a, dy=2za by definition; from which

dy = 255(1@.

For a vector function we should write
dp= "0 0 £ (o +n7dp) =S ()] - . (169),
and for a scalar function, p = ¢ (¢),
dp=d[$(H]= ot [¢(t +9)-s (t)] . 70),
in which latter ¢ and d¢ are mdependent and arbitrary scalars.

64. As a further illustration of the definition, let

p=9()
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be the equation of any plane curve in space, and op = p (Fig. 64)
a vector from the origin to a point p

of the curve ; ¢ being any arbitrary sca- P Fig. 64.
lar representing time, for example ; so "
that its value, for any other point p' of
the curve, represents the interval e T
elapsed from any definite epoch to the o
time when the point generating the ot
curve has reached p! o

If p' be the vector to ¢ then »!

p'—p=rP'=Lp

is strictly the finite difference between p and p, and, if the corre-
sponding change in ¢ be At,

'=(p+Ap)—p=Ap=¢(l+A)—$()=A(t);

where op'= ¢(t + A t), and At is the interval from p to »!

In $At, p would have reached some point as ", for which
or'=¢(t+4At), on the supposition that pp" is described in
4 At. On the basis of this closer approximation to the velocity
at p, P would have been found at p'", had this velocity remained
unchanged, such that

pp"=2Pr"=2(0p"—oP)=2[¢d(t + 3L t)— ¢ ()].

For a closer approximation to the vector described in A ¢ with
the velocity at p, suppose at the end of $ A ¢ the point is at ",
for which op"'=¢ (¢ + $At). Under this supposition, the vec-

- tor described in A ¢ would have been

pp'"'=8pp"=8(or""—0P)=8[p(t+ 1A ) — (D) ],

and, at the limit, representing the multiple of the diminishing

chord by dp,
ord by dp=“li:i:°n[¢<t+%t)—¢(‘)}
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65. Resuming Equation (167),

dp=df(g9)= " n[f(q+nld)—f(D], (o),

the second member may be written f(g, dg), but not, as ordi-

narily, f(g)dg.

In f(g, dg), dg may be composed of parts, as ¢; ¢", ¢"', ----r,
with reference to which f(q, dg)=f(q, ¢'+¢"+ -....) is distrib-
utive. To prove this, let

dg=q'+q";
we are to prove that

S99+ 9")=S(g, ¢")+S (g, 9")-

Since before passing to the limit, the second member of (a)
is a function of n, ¢ and dg, we may express this function by
the symbol f,(g, dg), and write

(g, dg) = n[f(g+ n"'dg) — f(9) ]=1u(2, d9),
f(g+n71dg)=f(g) +n"£.(q, dg).

Replacing dg by ¢' and ¢" in succession, we have

or

S(g+n7¢)=1(9)+771a(2:9)s
flg+n¢") =D+ " f(e, ¢"),

and, following the same law of derivation,

fg+n1g"+n1g") = f(g+n'g") + 0 S (g +n72g", '),
@ +ng'+n1¢")=f(9) +nfu(g, '+ 9"),

from which
fu(g, '+ 9" =g, @)+ (g +271¢", ¢),
the limiting form of which, for » = o, is

S d+dN=r0 ) +fgq) . . (A7),
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which may, in like manner, be ektended to the case of
dq q +q"+ q"'+ .....

It follows from the above that, if p = f(q, zdq),

f(g, zdq) =2f(g,dg) . . . . (172).

IfQ=F(g,r,...), whence, Equation (168),
dQ=d[F(q,r,....)]
hmlt o [F(g+n"dg, v+ nldr, ..) — F(g, 7y o) ]y

the last member will be a linear and homogeneous function of
dq, dr, ....., and distributive with reference to each of them.
Hence, to differentiate such a function, we do so with reference
to each factor, and take the sum of the results obtained, as usual ;
taking care, however, not to make use of the commutative prop-
erty. Thus d(gr)=dgq . r + gdr, but not rdq + gdr.

66. When ¢ is a function of any variable scalar ¢, represent-
ing time, for example, then, if ¢ be given a finite increment A ¢,
for which the corresponding one of ¢ is A ¢, we have

Agq=Aw+Azi4+Ayj+Azk;

and, if the several parts of the quaternion vary continuously
with the independent variable ¢, at the limit we may form, as
usual, the differential coefficient

d_qdwdx L&
-+ + k.

The successive differential coefficients, as also the partial ones,
when ¢ = ¢(¢, v, .....), are derived from the quadrinomial form in
the same manner.
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67. Examples.
1. To find dTg.
' arg_dVw+ o+ 42
dt dt
=1 (pd® 02, 8y, 02
_Tq(wdt+zdt+ydt+ dt)
—1lg. %y, _g. % UKTg
=1g> @ X4=8:7 g
dq
dg 1 _ @
=qu.dt TqTq quq,
or
dq
arg_g&
dt ~ "Ug
2. (Tp)t=—p' '
The first member being a scalar, we have
2 TpdTp.

From the second member
C A= (o +ntdp)t — 7]
= limit pdp + dp « p + n~(dp)?
= pdp + dp « p=28pdp.

Equating
TpdTp = — Spdp.

From this we may obtain

dp
dTp=—S8 . Updp =8+
or Up
aTp _ odp
Tp " p
8. To find dUq. We have
TeUg=gq;
drq . Ug + dUq . Tqg =dg,

L}
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' whence
dlq . gq+qu . Tq=gg’
TqUq TqUq q-
or
dug_dg_dTq
Ug ¢ Tq
and, substituting from Ex. 2,
Ug ¢ q
- 909 _ydg
Uq q
or
dUq = Y% - Ug.

4. From the above expressions for dTq and dUg, we have
dq =dTq . Uq 4+ TqdUq
d
=(8 daq vy&\y
(55a+Vig) "
q q

a8 the form under which the differential of a quaternion may
always be written.

5. To find dUp. We have, from p = TpUp,
dp =dTp . Up + TpdUp,

dp_ dTp , dUp
p Tp Up
=g% 4 90 from Ex. 2,
p Up
or
dUp_dp_gdp_ydo_yap-p_ Yedo _ op0
Up p P P P (Tp)?
whence, also,
dup_ﬂ_'_dﬂﬂ.
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67. Examples.
1. To find dTg.
| Mg NVTFTETE
dt
=i( Ttz -—+yd"+ )
Tg
_ 1. dg dq UKqTq
_qu. —Kq = S. g
d
dg 1 dt
=TS . =& ——=TgS—
% Tqrg~ ¢
or
dq
d'l‘q dt
—1 sU—q
2. (Tp)i=—p". '
The first member being a scalar, we have
2 TpdTp.

From the second member

- d(p) =;‘:‘; n[(p+nldp)? —p]
= limit pdp + dp « p + n~(dp)?
=pdp +dp « p=28pdp.

Equating
TpdTp = — Spdp.

From this we may obtain
dp
dTp=—8 . Updp = 87+
or Up
p_
L8
Tp P
8. To find dUq. We have
TqUg=gq;
dTq . Ug +dUq . Tq =dgq,

L}
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' whence
dTq . Ug+qu o Tq=g’
TqUq TqUgq q-

dug_dg_ d1g

Ug ¢ Tg
and, substituting from Ex. 2,

Ug ¢ q

Y d__Ug= vﬂ’
Uq q

or

or
dUg = Vﬂ - Ug.
q9
4. From the above expressions for dTq and dUq, we have
dg =dTq . Ug + TqdUgq
d
—(s% v
( Ug + qu) be
q q

as the form under which the differential of a quaternion may
always be written.

5. To find dUp. We have, from p = TpUp,
dp=dTp . Up + TpdUp,

dp _dlp  dUp
p Tp TUp
=sgﬂ+d_gf, from Ex. 2,
p Up
or
Up »p P P P (Tp)?
whence, also,
_pV edpp
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6. From the above expressions for dTp and dUp,

dp=dTp . Up+p%§.

7. That 8, V and K are commutative with d is seen from the
following :

9=8¢+ Vg,
whence
dq = d8q +dVq, (2)
and, since dq is a quaternion, A
dq = qu + de1 (b)
hence
dSq=8dqg and dVq=Vdg. (¢)
Again
Kq =8¢ — Vg,
whence

dKg = dSq — dVq,

and, taking the conjugate of dg in either (b) or (a), we have,

with or without (c),
qu = qu .

8. (T9)?=gKq.
2TqdTg = "0 1 [(g 4 n-dg) (Kq +n-'dKg) — gKg]
= limit [dq (Kq + n~'Kdq) + gKdg]
=dg . Kq + ¢Kdg
=28. ¢Kdg=28 . Kqdg, [Equation (80)]
1

or, since Tq =TKq and UKq=U1=_.,
9 Ug

1
dlg=8 .U dg=8 . Ugdg.

If g = a vector, as p, then, since Kp = — p, this becomes

. dTp=—8 . Updp,
as in Ex. 2.
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9. r=¢%. .
dr="111 1 1(q +n1dg)*— ¢7]
= limit [qdg + dg . ¢ +n"'(dg)*]

=qdg+dg.q;
.. dr=28qdg + 28qVdq + 28dqVq.

If ¢ = a vector, as p, then 8¢ =0, 8dg=0, and

d(p') =28pdp
as in Ex. 2.

10. r=+/g. Then g=1* and, as before,
dg=rdr+dr.r.
Operating with »x and X Kr, in succession,

rdg=7rdr+rdr .7,
dq . Kr=rdr « Kr +-dr . rEr
=rdr « Kr 4 (Tr)*dr,
or, adding,

rdq + dq « Kr =[7* 4+ (Tr)*]dr + rdr(r +Kr)
=[r® +(Tr)? + 28r . ¥]dr,

which gives dr'= dVq in terms of dg.

11. ¢g¢'=1. We have
qd(¢") +dg . ¢ =0.
Operating with g~ X

ged(g ) +g'dg . 71 =0,

dl:-ldq . .1..

q q q
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If g = a wvector, as p, ’

al=_1g1
P PP
PP P PP
do 1/1 1
=—§—— —dp-}-dp.—3
) e/
=d_f_gsd”
Popp
=(d” 2s"l—"’)1 x%.1
[3 p/p PP

12. Differentiate SUgq.
d
dSUg = 8dUg =S . V—quq [Exs. 7 and 8.]

d
==s.2§UVQTVUq

dq
=—S. TVU .
quvg ¢

18. Differentiate VUq.
d
dVUg=V.dUg=V. V—g—quq [Exs. 7 and 3.]
= V . Uq"IV(dq ° q-l) .

14. Differentiate TVUq.

A(VU .
aTVUg = s 4V Ex. 2.
q Vg '[ x. 2.]
dq
avg _ Y%
=8gve= " Uvg
dq

=8. qU—quUq.
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The Right Line.

As in Cartesian codrdinates, the form of the equations of a
right line, as of other loci, will depend upon the assumed con-
stants, and in any given problem one form may be more con-
veniently used than another.

68. Right line through the origin.

If o be the initial point, or origin, and p = or a variable vec-
tor in the prolongation of a = 0a, then

pP=%a « « . o« o o . (178)

is the equation of a right line through the origin in the direction
of the constant vector a.
The equations

UP:U“} ' 174
sl am

obviously refer to the same right line.

Since any line, represented as a vector by a, is parallel to
p =2a, we may say that the above equations are those of a right
line through the origin parallel to a given line;. or, A being a
point given by a =o0a, they are the equations of a right line
through the origin and a given point.

69. Parallel lines.
If B = oB be a constant vector to a given point B, then

p=B+za . . . . . . (173)

is the equation of a right line through a given point, and parallel
to a given line, as p'= za through the origin. Or, e being a given
vector, it is the equation of a right line through a given point
and having a given direction. If a is an undetermined vector,
it becomes the general equation of any one of the infinite num-
ber of right lines which may be drawn through a given point. If
0 and B coincide, 8 = 0, and, as before, p = Za.
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o remaining the same, and 8' = oB' being a vector to any other
point B} for the equations of two parallels, we have

z:giz} S .. .oTe),
or, since a and p — @ are parallel,

Va(p— B)=0 :
va(::—-ﬁ')=0}' ... .oam.

70. Right line through two given points.

If oa=a (Fig. 65), oB=p are the vectors to the given
points, and p the variable vector to any
Fig. 65. point R of the line whose equation is re-

A B r Quired, we have

AR = 2AB = (3 —a),
and
OR = OA + AR,

or, for the required equation,
p=atz(B—a) . (I78),

which, if one of the points, as A, coincides with the origin,
becomes p = zf3, as before.

‘We have seen, Art. 55, that if 88y =0, a, 8 and y are com-
planar. Replacing y by the variable vector p,

8aBp=0 . . . . . . (179)

is the equation of a plane, since it expresses the condition that p
is complanar with « and 8. If we have also Sayp =0, the two
equations, taken together, represent the line of intersection of
these two planes. .

These equations may be obtained from the line p = xa by ope-
rating with 8(VaB) X and 8(Vay) X ; or, conversely, to find the
equation of the line in terms of known quantities, having given

8aBp=0, Bayp=0,
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write these latter under the form
8.pVef=0, 8.pVay=0,

whence it appears that p is perpendicular to both Va8 and Vay,
and is consequently parallel to the axis of their product;

therefore
p=YyYV . Yaf3Vay

= y(ySaBa— aSafy) [Eq. (112)]
=— yaSafy,

or, putting — ySaBy =2,

p =Za.

7L Right line perpendicular to a given line.
1. Let §=op (Fig. 66) be a vector through the origin. To

find the equation of pc through its extremity Fig. 65.
and perpendicular to it. Now p—disa » R C
vector along DR, and therefore by condition

83(p —8)=0.

‘Whence 83p = — (T8)?, or
83p=c¢, a constant . . ‘.) . . (180).
In order that p, p — & and & be complanar, we must have
8.%(p—8=0,
8.(V3p)(p—8)=0.

or

2. p — 8, being perpendicular to both 8 and Vdp, will be
parallel to the axis of their product, or to V. §V8p. Hence, if
y=o0c be a vector to any point c, in the plane of op and DR, the
equation of a right line through a given point ¢, perpendicular to
a given line oo, will be

p='y+$Vo8V8‘y- e o o o (181).
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8. If the perpendicular is to pass through the ongm, then,
from Equation (180),

8p=0 . . . . . . . (182),
or, in another form, from Equation (181), y being parallel to
V. 8Vsy,

p=yV.8Vsy . . . . . . (183).

4. The student will find it useful to translate the Quaternion
into the Cartesian forms. Thus, from Equation (180), if Rop= 0,

88p = — T8Tp cosb,
whence, if r and d represent the tensors,

rdcosf=d?,, or r=

cos 6’
the polar equation of a right line.

5. Equation (181), of a line through a given point and per-
pendicular to a given line through the origin, may be otherwise
obtained, as follows:

Let y and 8, as before, be vectors to the point and along the
given line, respectively, and B a vector along the required per-
pendicular, whose equation will then be

p=y+zB. (@
To eliminate 8 we have the conditions
883 =0,
since 8 and B are perpendicular to each other, and

8y38=0,
since y, & and 8 are complanar. But Vdy is perpendicular to this
plane, and therefore V. 8V8y is parallel to B; hence, substitut-
ing in (@),

=7 + wv . SVS‘Y,

p=1y + z8Vy.

or simply
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If 8y88 <0, v, 8 and B are not complanar, and the problem is
indeterminate ; which also appears from (a), by operating with
X8 . 8, whence, since 835 =0,

8pd = 8y3,
a result which is independent of B, and an infinite number of
lines satisfy the condition.

6. If the line to which the perpendicular is drawn does not
pass through the origin, let
' p=B+za (a)
be its equation. Then, if p be the vector to the foot of the per-
pendicular, we have 8a(p —y)=0, or
8a(za+B—7)=0, ®
because the line is perpendicular to (a), or its parallel a. Hence,
from (b), a
za=a"'8a(y— B),
or, for the perpendicular p — v,
p—y=2a+B—y=a"'8a(y—B)—a"a(y—B)
= —a"'Va(y —B).
Its length is evidently
TV[Ue.(y—B)] . . . . . (184).

7. This perpendicular is the shortest distance from the point
to the line. The problem may, therefore, be stated thus: to
find the shortest distance from c to the line p =2a 4+ 8. p being
the vector from ¢ to any point of the given line, this vector is

B+ za—1y,
and, in order that its length be a minimum,

dT (B +%a—y)=0
=T(B +za—7)dT(B +2a—7)
=—S8[ (8 +2a —y)aldz =0, -
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or
S(ﬂ-{-a}a—'y)a:O,

that is, the line must be perpendicular to p = za + 8.

8. If the perpendicular distance from the origin to p=8 + za
is required, p, being as before the vector to the foot of the per-
pendicular, coincides with it; hence, y being zero, and & repre-
senting this value of p,

d=za+B.
Operating with X 8 . 8, since Sad =0,
—(T3)% = SpBs.
Hence
T8=§£\8= S .,BTb‘US,
™ TS

or
TS=8.8U5. . . . . . (185).

72. We are to observe that the foregoing equations of a right
line are, as remarked in Art. 60, all linear functions involving,
explicitly or implicitly, a single real and independent variable
scalar. Such is evidently the case for such equations as

p = Za, [Eq. (178)]
o= B2, [Eq. (175)]
p=a+a(B—a). [Eq. (178)]

So also for the implicit forms, as Vap=0 [Eq. (174)]; em-
ploying the trinomial forms
o= ai + bj + ck,

p= i+ yj+zk,
we have

ap = (bz — cy)i + (cx — az)j + (ay — bz)k — (az + by + ¢2).
‘Whence

Vap = (bz — cy)i + (cx — az)j + (ay — bxr)k=0;
Sobz=cy, cx=az, ay=bz,

in which  and y are functions of 2.
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The Plane.

73. Egquation of a plane.
1. If, in the equation 8 . 83 = 0, which denotes that B is per-
pendicular to 8, we replace 8 by the variable vector p,

8.%5=0. . . . . . . (186)

is the equation of a plane through the origin perpendicular to 8.

2. Or, let §=op (Fig. 66) be the vector- Fig. 66 (bis).
perpendicular on the plane, and pr any line » R _C
of the plane.

Then

83(p—8)=0,
83p =& =—(T9)%,
or

S88p=c, a constant . . (187)

is the general equation of a plane perpendicular to 8. Here Dr
is any line of the plane; and, if V3p=e¢,

Sep = an indeterminate quantity . . . (188).

If the plane pass through the origin, we have, as before,
83p = 0. Conversely, if 88p = c is the equation of a plane, 3 is a
vector perpendicular to the plane.

8. The equation of a plane through the origin perpendicular
to & may also be written in terms of any two of its vectors, as
y and B;

p=2B+1yy.

Both of these indeterminate vectors may be eliminated by
operating with 8 . § X , whence
S3p=0

as before ; or one may be eliminated by operating with ¥V . 8 X,
whence
VB =2,
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from which we may again derive S8p=0 by operating with
V.dx; for

=pS58—pS%,  [Eq. (111)]
whence, since 858 =0, 83p=0. ’

4. The equation of a plane through a point B, for which
oB = f3, and perpendicular to §, is

$(pE—p)=0 . . . . . (189).

5. Having the equation of a plane, S3p=¢, to find its dis-

tance from the origin, or the length of p when it coincides with
8, we have p = a8 ; hence

88p = ¢ = Sxd® = 287,

or
2=,
which, in p = 2§, gives
P=§9
or
Te=2< . . . . . . (190).
TS

74. To find the equation of a plane through the origin, making
equal angles with three given lines.

Let a, B, y be unit vectors along the lines. The equation of
the plane will be of the form

88p =0.

By condition, 828 =888=S8yd="T8sin¢ =2, ¢ being the
common angle made by the lines with the plane.
Hence

ing ==
snd =8
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To eliminate 8, we have, from Equation (118),
880y = VafSSyd + V3ySad + VyaSB8,
and, by condition,
88afy = (VaB + VBy + Vya).

The vector represented by the parenthesis is, then, the per-
pendicular on the plane, whose equation, therefore, is

Sp(VaB+VBy+Vya)=0. . . . (191),
and the sine of the angle ¢ is

8afBy
T(VaB + VBy + Vya)

75. Equation of a plane through three given points.

Let a, B, y be vectors to the given points; then are the lines
joining these points, as (a — 8), (8 —y), lines of the plane. If
p is the variable vector to any point of the plane, p —a is also a
line of the plane. Hence

8(p—a)(e—R)(B—7)=0,

or
8(paf — pay — pf* + pBy — a’B + o’y + aff* — afy) = 0.

But
8(—pB) =0, 8(—a’B)=0, ete.,
8(—pay) =8pya=8. pVya,
SpaB =S8 . pVap, etc.,
hence

8.p(Vaf+VBy+ Vya) —8aBy=0 . . (192),
which, by making the vector-parenthesis =&, may be written
under the form

8p3 — 8afy =0,
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in which 8 is along the perpendicular from the origin on the
plane. When p coincides with this perpendicular, p = 28, and,
from the above equation,

8% = SafBy,
or, for the vector-perpendicular,
- Safy
=20 = 8 1 Sa, =
P B = BTV T Ve

176. We observe again, from inspection of the equations of a
plane, that, as remarked in Art. 60, they are linear and func-
tions of two indeterminate scalars. Thus, for a plane through

the origin
8% =0, [Eq. (186)]

employing the trinomial forms §=ai+bj4ck and p=xi+yj+2k,
we obtain

8p = (b2 — ey)i + (e — az)j + (ay — ba)k — (az + by + c2),
the last term of which is the scalar part; hence
ax+by +cz=0,
the equation of a plane through the origin o, perpendicular to a
line from o to (a, b, ¢), which may be written f(z, y, 2) =0;

or as a function of two indeterminates. In the same way, from
an inspection of the other forms,

p==xa+yB, [Art. 73, 3]
p=238+za+yB,
S8p—c'=ax+dy+cz—c'=0, [Eq.(187)]

we observe they are linear functions of two indeterminate scalars.

77. Bxercises and Problems on the Right Line and
Plane.

1. B and y being wectors along two given lines which intersect
at the point A, to which the vector i3 oA = a, to write the equation
of a line perpendicular to each of the two given lines at their
intersection.
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‘VBy is a vector in the direction of the required line, whose
equation, therefore, is
p=a+xVBy. . . . . . (193).

If o' = 0A' be a vector to any other point, as A, then is
p=a'+2VBy
the equation of a line through a given point perpendicular to a
given plane ; the latter being given by two of its lines.

2. a and B being vectors to two given points, A and B, and
88p = ¢ the equation of a given plane, to find the equation of a
plane through A and B perpendicular to the given plane.

8, p—a and a — B are lines of the required plane, hence

8(p—a)(a—B)3=0,

Sp(a—B)8+8aB6=0. . . . . (194)
is the required equation.

or

3. oc =y being a vector to a given point ¢, and p =a + 28,
p=a'+a'B the equations of two given lines, to write the equation
of a plane through c parallel to the two glven lines.

If lines be drawn through the given point parallel to the given
lines, they will lie in the required plane. As vectors, 8 and B’
are such lines, and p — y is also a line of the plane. Hence

888'(p—y)=0" . . . . . (195)
is the required equation. If y=a, or o', it is the equation of a
plane through one line parallel to the other. Or, if vy is inde-

terminate, it is the general equation of a plane parallel to two
given lines.

Otherwise : the equation of a plane through the extremity of
v parallel to two given lines, whose directions are given by
e and 3, is evidently p = y 4 za 4 yB.
4. To find the distance between two points.
a and 3 being vectors to the points,
i y=B—a.
Squaring
E=b4+a®—2abcosc.
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5. A plane being given by two of its lines, B und vy, to write
the equation of a right line through A perpendicular to the plane. ’

Let oA =a. Draw two lines through A paralle: to 8 and y.
Then
p=a+xVB7 e e e e e (196).

If the plane is given by the equation 83p = ¢, then
p=a+:68 e o o e o o & (197).

6. Find the length of the perpendicular from A to the plane,
in the preceding example.

Operating on Equation (197) with 8 . 8 X
S8p = 88a + 28 =,

28 =c—88a;
o2 =8(c—8%). . . . . (198).

or

7. 83(p —B)=0, Equation (189), being the equation of a
plane through B perpendicular to 8, to find the distance from a
polnt c to the plane.

Let y=o0c. The perpendicular on the plane from ¢, being
parallel to 8, will have for its equation

p=17y+xd.
To find «, operate with 8 . 8 X, whence
83p = 88y + 2,
or, from the equation of the plane,

88y + 28 = 838;
s 28=—87188(y — B),

2T =T 188(y — B) =8 [US . (y— B)].

and

8. Write the equation of a plane through the parallels

p=a+zp,
p=d'+zB.
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9. Write the equation of a plane through the line
p=a+2z8
perpendicular to the plane
80p=0.

10. @iven the direction of a vector-perpendicular to a plane,
to find its length so that the plane may meet three given planes in
a point.

Let 3 be the given vector-perpendicular, and

Bap=a, 8Bp=0>, Syp=c

the equations of the given planes. If the equation of the plane

be written
8p ==,

then z must have such a value that one value of p shall satisfy
the equations of all four of the planes. From Equation (118)

we have
pSaBy = Vaf3Syp + VBySap + VyaSf3p
= cVaf + aVBy + b¥ya.

Operating with 8 . 8 X, to introduce =,

" #8afy = c85a8 + a83By + bSSya.

11. To find the shortest distance between two given right lines.

Let the lines be given by the equations
p=a+up, (@)
p=d+2'B. )
The equation of a plane through either line, as (b), parallel to

the other (a), is [Equation (195)]

88B'(p—a)=0. (©)
VBp' is a vector-perpendicular to this plane. Hence, if yVBB'

be the shortest vector distance between the lines, we have, since
a —a'—yVBB' is a vector complanar with 8 and 8;

88B'(a — o' — yVBB) =0,
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or

8(8BB' +VBR) (a —a' — yVBR) =0,
—y(VBB')*+8[VBB'(a —a)]=0;
or, dividing by T(V58'),
T(yVBR)=T8[(a —a)U(VBRR)]. . . (199),

the symbol T denoting that only the positive numerical value of
the scalar is taken.
Otherwise : since the distance is to be a minimum,

whence

dT(p'—p)=0,
8(p'— p) (B'dz'— Bdz) = 0,
8(p'—p)B=0 and S(p'—p)B'=0,

or the shortest distance is their common perpendicular, whose
length may be found as above.

whence

or

12. Given 83,p = d, and 88,p= d,, the equations of two planes,
to find the equation of their line of intersection.
This equation will be of the form

p =mb, + ndy + V8, 8;. (a)
To find m and », we have, from (a),
83,p = i3y + nS8 8,
83;p = ndy’ + m8d,8y,
from which we obtain

o S1p — 1858, 88,0 — ny’,

- & T8
n=sslsasslp—slzsszp
(85,85)* — &8y’

(85,8)* — 8282 = (V8,8)*;
85,8 — dy?
(V3,8;)*

But

e M=
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And similarly
e BaSBG — 82
(V8,8,)°
Substituting these values in (a)
_ 88,8, — dpdy | dy83,8,— a3

P=—Womyt 3t (va gy ateVadk

which is -the equation of the required line, a less useful form than
those of the two simple conditions of Art. 70.

If the two planes pass through the origin, then also does their
line of intersection ; and since every line in one plane is perpen-
dicular to §,, and every line in the other to &, V3,8; is a line
along the intersection, as in (a), and the equation becomes

p=aV83 . . . . . . (200).
13. The planes being given as in Equation (189),

8 (p—B)=0, (@)
88'(p - B =0, ®)
to find the line of intersection.

The vector p to any point of the line must satisfy both (a)
and (b). This vector may be decomposed into three vectors
parallel to 8, &' and V88, which are given, and not complanar,
by Equation (118); whence

pS . 33'V88' = 8pdV (&' « V88') + 8pd'V(V38' « 8) + 8(pV33') Va&',
or, from (a) and (b),

— p(TV33")? = 8308V (S’ . V33') 4 SV (V53' « 8) + 885'pV8S',
or, since 888'p is the only indeterminate scalar, putting it equal
to z, we have

— p(TV33")? =SBV (3 . Y38") + S&'B'V(V88' . 8) + «Vad.

If the planes pass through the origin, in which case 8 and B

are zero, we have, as before,
p= Vb
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14. To write the equation of a plane through the origin and
the line of intersection of

83(p—RB)=0, (@)
85'(p— ) =0. ®)

If p is such that 83p = 8383, and also 88'p = 88'3', then both the
above equations will be satisfied. Hence, from (a) and (b)

83p83'8'— S5B88'p = 0,

which is also a plane through the origin. This equation may

also be written
S[(3858' — §'88)p] = 0,
which shows that
883'8'— 8'S4B

is a vector-perpendicular to the plane, and therefore to the line
of intersection of (a) and (b).

15. To find the equation of condition that four points lie in
a plane.

If the vectors to the four points be a, B, v, 8, then, to meet
the condition,

8—a, 8—B8, 8—y
must be complanar, and therefore
S(—a)(3—B)(8—y)=0,
898y + Saby +8aB=SaBy . . . (201),

whence

which is the equation of condition.
Or, 2 and y being indeterminate, we have also

S=a+a(B—a)+y(y—B),
4+ @—1)a+(y—2)B—yy=0,
14+ (@—1)+(y—2)—y =0,

or

and
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Or, in general,
aa+bﬁ+0y+d8=0}
abbretd=0f " T (202),

are the sufficient conditions of complanarity.
These conditions are analogous to Equation (9).

16. Given the three planes of a triedral, to find the equations
of planes through the edges perpendicular to the opposite faces,
and to show that they intersect in a right line.

Taking the vertex as the initial point, let

8ap =0, (a)
88p =0, )
8yp =0 ©

be the equations of the plane faces. Then Vaf is a vector par-
allel to the intersection of (a) and (), and V. yVaf is a vector
perpendicular to the required plane through their common edge.
Hence the equation of this plane is

8(pV. y¥aB)=0. (a")
Similarly, or by a cyclic change of vectors,

8(pV . aVBy)=0, @®"

S(pV. BVya)=0 (c"

are the equations of the other two planes.

If from their common point of intersection normals are drawn
to the planes, then are V. yVaB, V.aVBy and V. 8Vya vector
lines parallel to them ; but, Equation (123),

V(yVoB + aVBy + BVya)=0.

Hence these vectors are complanar, and the planes therefore
intersect in a right line.
Otherwise : from Equation (111)

V(aVBy) = y8aB — BSay;
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hence, from (b'),

8(pySaB — pBSay) = 8afSpy — BaySpB =0.

Similarly, or by cyclic permutation,

88ySpa — SBaSpy = 0,
8yaSpB — 8yBSpa=0.

But the sum of these three equations is identically zero, either
two giving the third by subtraction or addition.

17. To find the locus of a point which divides all right lines
terminating in two given lines into segments which have a com-
mon ratio.

Fig.61. Let pa and p'B (Fig. 67) be the two
given lines, a and B unit vectors parallel

> to them, BA any line terminating in the
° R given lines, and ® a point such that
D7 - RA = mBR. Assume pp', a perpendicular
to both the given lines, o, its middle
point, as the origin, and op =8, op'=— 8§, or=p.
Then
0A = p+ RA =08+ 2a.
OB=p+RB=—-8+yﬁ.
Adding
2p + RA + RB = Za + yB. (a)
But
RA+RB=m—1RA=m”;1(—p+8+$a),

which substituted in (a) gives

p—8—za=m(yB—p—3), ®)
whence, since 858 = 88a =0,

S8p(m +1)=8(1 —m)=c,
or the locus is a plane perpendicular Zo oo/,
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If the given ratio is unity, or BR = RA, then m =1 and
8% =0,

and the locus is a plane through o perpendicular to pp'.
If a and B are parallel, then (b) becomes

p—d=m(z'a—p—3),
SSp(m +1)=(1 —m)8&,
a right line perpendicular to pp! If at the same time m =1,

whence

‘ 8p=0 and p==c'la,
a right line through the origin parallel to the given lines.

18. If the sums of the perpendiculars from two given points on
two given planes are equal, the sum of the perpendiculars from
any point of the line joining them is the same.

Let A and B be the given points, oA = a, 0B = 8, and 83p=d,
S3'p=d' be the equations of the planes; & and &' being unit
vectors, so that 3 and yd' are the vector-perpendiculars from a
on the planes. Then

= Sad — d,
y=Sad'—d;
and
24+y=8(8+8)—(d+d').
Similarly

2'+y'=880@+8)—(d+d).
But, by condition,
Sa(8+98")=8B(8+78"),
S(B—a)(8+38)=0. (a)

The vector from o to any other point of the line AB is
a4 2 (B8 —a); whence, for this point,

2 4y =8a+2(B— )] (8 +8) — (@+d),

for which point, since (a) remains true, the sum therefore is
unchanged.

or
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19. To find the locus of the middle points of the elements of an
hyperbolic paraboloid.

Let the equations of the plane director and rectilinear direc-
trices be

85p =0,
p=a+2zB and p=d +2'B!

Also, let oM = . be the vector to the middle point of an ele-
ment so chosen that the vectors to the extremities are a4 288
and o' 4 '8, Then, since » is the middle point,

2p=a+2B+d +2B. (a)

The vector element is

—a'f'—a' +a+ 2B,
and, being parallel to the plane director,
88(—a' +a+2B—2'8)=0.

This is a scalar equation between known quantities from which
we may find 2’ in terms of «; substituting this value in (a), we
have an equation of the form

p=o0+ xﬁla
or the locus is a right line.
20. If, from any ;hree points on the line of intersection of two

planes, lines be drawn, one in each plane, the triangles formed
by their intersections are sections of the same pyramid.

The Circle and Sphere.
78. Equations of the circle.

The equation of the circle may be written under various
forms. If a and B are vector-radii at right angles to each other,
and Ta = TS, we may write

P=coso . a+3in0 . B « e e e (203),

in terms of a single variable scalar 6.
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If a and B are unit vectors along the radii,

p==2a+ypB
or, since 2* 4 y*=1, ’

p=(7"—y’)&a+yﬁ o o o (204).
The initial point being at the center,

Tp="Ta
=1 N €111
pl=—r"

are evidently all equations of the circle.
If o (Fig. 68) be any initial point, ¢ the center, to which the
vector oc =1y, p the variable vector to

. Fig. 68,
any point P, CP = a, then P
pP=7=%
whence a
(p=7)'=—1r". .(206), o
the vector equation of the circle whose y

radius is 7.
If Ty = ¢, it may be put under the form

P—28py=c—r . . . . . (207).

If the initial point is on the circumference, we still have
(p—y)*=—1*; but y*=—+* hence

pPP—28py=0 . . . . . . (208),
or, since in this case Spy = Spa,

pPP—28pa=0 . . . . . . (209).

79. Equations of the sphere.

This surface may be conveniently treated of in connection
with the circle ; for, since nothing in the previous article restricts
the lines to one plane, the equations there deduced for the circle
are also applicable to the sphere.
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Another convenient form of the équation of a sphere is
(Fig. 68)
Tp—y)=Te . . . . . (210),

|
the center being at the extremity of y and Ta the radius.

80. Tangent line and plane.

A vector along the tangent being dp, we have, from Equation
(203),
dp=—sinf . a 4 cosf . B3,

and for the tangent line = = p -+ «dp,
w=1c080 . a +8inf . B+ x[—sinf . a +cosb . B] (211),

where 7 is any vector to the tangent line at the point corre-
sponding to 6.
From the above we have directly

Spdp = 0,

or the tangent is perpendicular to the radius vector drawn to the
point of tangency.
By means of this property we may
B write the equation of the tangent as
follows : let = be the vector to any point
of the tangent, as B (Fig. 69), ¢ being
the initial point and p the vector to P,
the point of tangency. Then

8p(r —p) =0,
Spr=—1*
or . Coe e .. (212),
S-=1
p

are the equations of a tangent. Since nothing restricts the line
to one plane, they are also the equations of the tangent plane to
a sphere.
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The above well-known property may also be obtained by
differentiating Tp = Ta ; whence, Art. 67, 2,

8pdp =0,

and therefore p is perpendicular to the tangent line or plane.

8L. Chords of contact.

In Fig. 69 let cB = be the vector to a given point. The
equation of the tangent Bp must be satisfied for this point;
hence, from Equation 212,

SBP':_T”
or
SBoe=—2 . . . . . . (213),

which is equally true of the other point of tangency e, and being
the equation of a right line, it is that of the chord of contact pp!
And for the reason previously given, it is also the equation of
the plane of the circle of contact of the tangent cone to the
sphere, the vertex of the cone being at B.

82. Exercises and Problems on the Circle and the
Sphere.

In the following problems the various equations of the plane,
line, circle and sphere are employed to familiarize the student
with their use. Other equations than those selected in any
special problem might have been used, leading sometimes more
directly to the desired result. It will be found a useful exercise
to assume forms other than those chosen, as also to transform
the equations themselves and interpret the results. Thus, for
example, the equation of the circle (209),

pP—28pa=0
may be transformed into
8p(p—2a)=0,
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which gives immediately (Fig. 70) the property of the circle,
that the angle inscribed in a semi-circle- is
a right angle. Obviously, this includes the
case of chords drawn from any point in a
sphere to the extremities of a diameter, and
the above equation is a statement of the prop-
o osition that, p being a variable vector, the
‘ locus of the vertex of a right angle, whose
sides pass through the extremities of a and
P —a, is a sphere.
Again, with the origin at the center, we have (Fig. 71),

(p+ @)+ (a—p)=2a,

Fig. 70.
P

Fig. 7.
D and, operating with X 8 . (p —a),

r S(p+a)(p—a)=0;

.. P ig a right angle. This also follows from
Tp="Te, whence p’=d® and S(p+a)(p—a)=0.
Again, from Tp = Ta,
T(p + ) (p —a)=2TVap.

The first member is the rectangle of the chords »p, pp' (Fig. 71),
and the second member is

DI

20D . op sinpoP.

Hence the rectangle on the chords drawn from any point of a
circle to the extremities of a diameter is four times the area of
a triangle whose sides are p and a.

Also, from Tp = Ta,

pl==r,

pll=—1%;
-« 8(o'+p) (p'—p)=0.

But p'—p is a vector along the secant, and p'+ p is a vector
along the angle-bisector; now when the secant becomes a tan-

and for any other point
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gent, the angle-bisector becomes the radius ; therefore the radius
to the point of contact is perpendicular to the tangent.

1. The angle at the center of a circle i3 double that at the cir-
cumference standing on the same arc.

‘We have )
Tp = Ta,
and therefore, Art. 56, 18,
p=(p+a)a(p+a),

whence the proposition.

2. In any circle, the square of the tangent equals the product
of the secant and its external segment.

In Fig. 69 we have

CB = CP + PB,
. cB*=cP’+4 pB?,
or
pB:= cB?— cP?
= cB!—cp?, as lines,
=BD . BD.

8. The right line joining the points of intersection of two circles
is perpendicular to the line joining their centers.

Let (Fig. 72) cc'=a, cP=p, cp'=p/, and 7, 7' be the radii
of the circles. Then

P’=—"av
(p—a)?=—1"

Fig. 2
also (o= Y = — 1, “

Hence
Spa =3l \/
P

8a(p—p)=0;

or

hence pp' and cc' are at right angles.
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4. A chord i3 drawn parallel to the diameter of a circle; the
radii to the extremities of the chord make equal angles with the
diameter.

If p and p' be the vector-radii, 2a the vector-diameter, then
xa = the vector-chord, and

(P'_ "m‘)2 = ’l",
(p+za) =1,
whence the proposition.

5. If aBc i3 a triangle inscribed in a circle, show that the vector
of the product of the three sides in order is parallel to the tangent
at the wnitial point. [Compare Art. 55.]

If AB=p, ca=1y, and o is the center of the circle, then

—V(aB.BC.CA)=V.B(B+7y)y
=V(By+By)
=gy +¥8.

¢ and B being points of the circumference satisfying
PP —28pa=0 [Eq. (209)], substituting and operating with
S sa X

S . aV(4B « BC . CA) = 28aBSay — 28aBSay = 0.

Hence V(aB . BC . cA) is perpendicular to a, or parallel to the
tangent at A.

6. The sum of the squares of the lines from any point on a
diameter of a circle to the extremities of a parallel chord, is equal
to the sum of the squares of the segments of the diameter.

Let pp' (Fig. 73) be the chord parallel to-the diameter pp!
Fig. 7. o the given point, and ¢ the center of the
pr circle. Let cp=p, cP'=p; 0C=a, oP=4

P N '
‘\A/A ,and or'=p" Then

> o = — 8 = — (a’ 4+ 28ap + p%),
0P = — = — (4 280/ ;
. 0Pf 40P =200 4 2DC? — 2(Sap+8ap').




APPLICATIONS TO LOCI. 171

But
8(p—p)(p+p)=8(p+p)2a=0.
Therefore
8Sap + 8ap' =0,
and

or? 4 oP'? = po® 4 oD%,

7. To find the intersection of a plane and a sphere.

Let p* = — 7* be the equation of the sphere, & a vector-perpen-
dicular from its center on the plane and Té =d. Then, if 8 be
a vector of the plane,

p= 4+ B N
Substituting in the equation of the sphere, since $88= 0, we
have
p=—-a),

the equation of a circle whose radius is V7 — d?, and which is
real so long as d <.

8. To find the intersection of two spheres.
Let the equations of the given spheres be (Eq. 207)

pt—28py=2—1r%

pﬂ —_ 2 sp,y'= C', — ,’.12.
Subtracting, we have
28p(y — ¥') = a constant.

The intersection is therefore a circle whose plane is perpen-
dicular to y— v} the vector-line joining the centers of the spheres.
Assuming (Eq. 210)

T(p—7)=Ta and T(p—7y)=To

show that 28p(y —y') = a constant, as above.
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9. The planes of intersection of three spheres intersect in a
right line.
Let ¥/, ¥", v be the vector-lines to the centers of the spheres,
and their equations
. P, —928 PY' =d,
P’ —92 SW" = cn,
P’ -9 Sp‘y"': "
The equations of the planes of intersection are, from the pre-
ceding problem,
28p(y' —") =¢" (@)

_c"
2SP(7' — 7"1) — cIII__ cl, (b)
2sp(7"_ ‘y'") — c'"_ c"' (c)
Now, if p be so taken as to satisfy (a) and (b), we shall
obtain their line of intersection. But if p satisfies (a) and (),
it will also satisfy their difference, which is (¢); the planes there-
fore intersect in a right line.

10. To find the locus of the intersections of perpendiculars from
a fixed point upon lines through another fixed point.

Let » and »' be the points, PP’ =a, and 8 a vector-perpen-
dicular on any line through p; as p=0a + 8. Then

d=a+yB,

and operating with 8 . § X
8 = 88a,

which is the equation of a circle (Eq. 209) whose diameter is pp.

11. Prom a fized point P, lines are drawn to points, as
P, P, ... of a given right line. Required the locus of a point o
on these lines, such that pp' . PO = m?.

Let the variable vector Po=p ; then pp'=xp. By the condition

T(ep'. PO)= m?,
or
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If 8 be the vector-perpendicular from P on the given line,
and Té=d,

88(zp —8)=0,
or
288p = —d*;
2
o p’=%88p,

hence the locus is a circle through ».

12. If through any point chords be drawn to a circle, to find
the locus of the intersection of the pairs of tangents drawn at the
points of section of the chords and circle.

Let the point A be given by the vector oA =a, 0 being the
initial point taken at the center of the circle. Let p'=o0r be
the vector to one point of intersection r. The locus of r is
required. The equation of the chord of contact is (Eq. 213)

Splo=—1%
which, since the chord passes through A, may be written
Spla=—1%,

where a is a constant vector. The locus is therefore a straight
line perpendicular to oa (Eq. 180).

13. To find the locus of the feet of perpendiculars drawn through
a given point to planes passing through another given point.

Let the initial point be taken at the origin of perpendiculars,
a the vector to the point through which the planes are passed,
and § a perpendicular. Then

$5(5— a) =0,
& —8a8 =0

or

is true for any perpendicular. Hence the locus is a sphere whose
diameter is the line joining the given points.
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Otherwise : if the origin be taken at the point common to the
planes, and the equation of one of the planes is 83p =0, then
the vector-perpendicular is (Eq. 198)

8-188a,
and, if p be the vector to its foot,
p=a— 31 S3a,
or
p—a= — ! 88a,
whence
(p—a)t= 8IS,
and
Sap — o = — §-%(88a)*.
Adding the last two equations
o' —8ap =0,
or
T(p—4a)=T4a,

which is the equation of a sphere whose radius is T2 and center
is at the extremity of ;, or whose diameter is the line joining
the points.
14. To find the locus of a point P which divides any line os
drawn from a given point to a given plane, so that
OP . 08 = m, a constant.

Let op =p and 08 = o ; also let 830 = ¢ be the equation of the
plane. We have, by condition,

TpTo =m,

and

Up=TUo;

oo To= ﬂ,
T,

and

mUp

o= T

mp
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Substituting in the equation of the plane
m83p + cp* =0,

which is the equation of a sphere passing through o and having
m .
o for a diameter.

15. To find the locus of a point the ratio of whose distances
Sfrom two given points is constant.

Let o and A be the two given points, 0A = a, OR=p, R being
a point of the locus. Then, by condition, if m be the given
ratio,
T(p — a) =mTp,

whence
p*— 28pa + o = m?p?,
(l—m’)p =28ap — o*
1 —m?
—2sap_ mg ”
or
. 2Sap o mia®
a TA—wy T A

.. T —- a — T ma ,
(P 1 —m’) 1—m?
which is the equation of a sphere whose radius is T

o (Eq 210).

a, and

whose center ¢ is on the line o4, so that oc = -

16. Given two points A and B, to find the locus of P when
AP? 4 BP? = oP?.
o being the origin, let oA =a, 0=y, op=p. Then, by
condition,
PP=(p—a)+(p—B)%

P —28p(a+B)=—(a*+ ),
[p—(a+B)]* = 2848,
Tp—(+B)]=V '—28‘16’_

whence
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which is the equation of a sphere whose center is at the extremity
of (a+ f), if 8B is negative, or the angle 408 acute. If this
angle is obtuse, there is no point satisfying the condition. If
Ao0B = 90°, the locus is a point. -

83. Exercises in the transformation and interpretation of
elementary symbolic forms.
1. From the equation
(p+a)'=(p—a)!
derive in succession the equations

pta_,
p—a

T(p+a)=T(p—a) and T ’
and state what locus they represent.
2. From the equation
P, P_
K; + = 0
derive symbolically the equations

2
ap+pa=0, 8£=0, sU =0, (U§>=—1, and TVO. =1,

and interpret them as the equations of the same locus.

3. Transform

to the forms a
8f=1 ana sul=rd
and interpret. @ N o
4. Transform Sp;mli =0to 8 2 = s'f—j, and interpret.
5. Transform (p—pB)’=(p—¢c)? to T(p—B)=T(p—0a),
and interpret.

6. What locus is represented by K% - Ti =0?
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(A [AY
7. Wha.tby(— =—17? By(;):—a’?

P_uB p
8. WhatbyU; a? Up=TUB? U,B_l?-

11.

12.

13.

14.
15.
16.
17.

-el(’—):a’?
a a
9 2
stP=suP? sul——_suts (su'—’) =<sug) ?
a a a a a a
Tp=1?
Transform (p — a)?=a® to T(p — a) = Ta, and interpret.

Under what other form may we write (p — a)*=(8— a)*?

Of what locus is it the equation?

18.

pPP+a¥=0? p'4+1=0? Translate the latter into Car-

tesian coordinates, by means of the trinomial form, and so deter-
mine the locus anew.

19.

20.
21.

22.

23.
24.

T(p—B)=T(B—a)?
Compare SU; = E and S% =1 with the forms of Ex. 3.
‘What locus is represented by 88p + p*=0 when T8 =17

-G
(T g)'= —1?

Show that V. VaBVap=0 is the equation of a plane.

What plane? [Eq. (112)].
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The Conic Sections.

Cartesian Forms.
84. The Parabola.

Resuming the general form of the equation of a plane curve
p=2a+YB,
from the relation y* = 2pz, we obtain

p=%a+yﬁ. e e e e (214)

for the vector equation of the parabola when the vertex is the
initial point. If the latter is taken anywhere on the curve, from
the relation y* = 2p'z, we obtain

,,=§~'%a+yp C e .. (5);
and if the initial point is at the focus, then y* = 2 pz + p* gives
1
p=gp P=PatyB - . . . ()
or again, in terms of a single scalar ¢,
¢ -
p=;2-a+tﬂ N ¢ 1) B

) In Equations (214), (215) and (216), a and B are unit vectors
parallel to a diameter and tangent at its vertex, being at right
angles to each other in Equations (214) and (216); in Equation
(217) a and B are any given vectors parallel to a diameter and
tangent at its vertex, the initial point being on the curve.

85. Tangent to the parabola.

From Equation (216) we have for the vector along the tangent
(Art. 62)

%a+ﬁv
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and, therefore, the equation of the tangent is
. vr==21—p(y’—p’)a+yl3+Y(%a+B) . . (218).
From Equation (217) the vector along the tangent is
ta+ B,

and the equation of the tangent is
1r=ga+t,3+x(ta+ﬁ) C .. (219).
If p be the vector to a point on the diameter of a parabola, the
point being given by the equation
p=ma+np, (@)
and a tangent to the curve be drawn through this point, then
(@) must satisfy the equation of the tangent-line and

. 2
‘Ina+nﬁ=%a+tﬁ+x(ta+,3),

whence £
'm,=§+xt and n=t+4 =z,

o t=n+Vn'—2m; )

hence, in general, two tangents can be drawn to the curve through
the given point. When n®=2m, they coincide; in this case,
from (a), n?
= E a4 nﬁ,

the point being on the curve. If 2m > n? ¢ is imaginary, and
no tangent can be drawn ; in this case (a) becomes

n?
P=(§ +a)a+”ﬁ7

the point being within the curve.
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86. Examples on the parabola.
1. The intercept of the tangent on the diameter is equal to the
Fig. 14, abscissa of the point of contact.

® Since the tangent is parallel to
the vector ta 4 8, or to any multiple
of it, it is parallel to #*a +¢8 or to

ﬂ ga +18 +ga, that is, to (Fig. 74)

OP 4 OX.
T 8s/lo X
But

TP = TO + OP;
/ 4 .*. TO = OX.

2. If, from any point on a di-
ameter produced, tangents be drawn,
the chord of contact is parallel to the
tangent at the vertex of the diameter.

If ¢ and t" correspond to the
points of tangency, we have for the vector-chord of contact

Pl_plb a+t,ﬂ"‘ a—t"B,
which is parallel to

t+t"

or, from Equation (), Art. 85, to

B + na,
which is independent of m.

8. To find the locus of the extremity of the diagonal of a rect-
angle whose sides are two chords drawn from the vertex.

Let op and o' be the chords. Then

0P=P=%‘,a+.’/ﬁ, (a)

oyt ! )
OP—P—%"' yB
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The vector-diagonal &' is p + p; or
12
& -_--'/_";Ty., +y—v)B;

which may be put under the form of the equation of the parabola
by adding and subtracting —~= ny 227 q, giving

6'=——("’;;’) u+(y—y')ﬂ+27"’;’7a- ©

But, by condition, Spp' =0. Hence, from (a) and (b), 8a8
being zero, iy
W-gp=% - ¥w'=(2p)? @)
which in (¢) gwes
(y y)? ' 4
5p oty )B + 4pa.

Changing the origin to the extremity of 4pa,
— )2
~ =(y 21)!/) a+(y_y')p.

Hence the locus is a similar parabola whose vertex is at a
distance of twice the parameter of the given parabola from its
vertex.

Moreover, from (d), xx'=(2p)3. Hence the parameter is a
mean proportional between the ordinates and the abscissas of the
extremities of chords at right angles.

4. If tangents be drawn at the vertices of an inscribed triangle,
the sides of the triangle produced will intersect the tangents in three
points of a right line.

Let opp' (Fig. 74) be the inscribed triangle, and one of the
vertices, as 0, the initial point. Then, for the points » and ¢’
respectively, we have

P=g"-+tﬁ’
'__tfa_’_tlﬁ
P'=3 .
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Let m, m,, 3 be the vectors to the points of intersection ; then

1rl=0P+Psl=-t—;a+tﬁ+x(ta+ﬁ).

2
I
m=2a'0p'= a:'(%a + t'B) ;
t2 wltlﬂ
‘e §+xt=T, t+x=z't,’
* [
=
2t —t'?

Hence

_ ¢ Y. & [t
"‘—2tt'-t'2(2a+w)—2t—t’<§a+p)’
In a similar manner

_ t!2 t
"*—57:(5“”)-

But
m3=OP + yPP' = oP + y(p'— p)
£ t'2—¢2 ,
=§a+tﬂ+y > a+(t—t)/3].
Also
m3=28;
) t_‘ tl2_t2_ "
. 2+y_‘—2 =0, t+y(t'—t) =z,
=,
t+4t
Hence
_ ot
™=t
Now

4 " 42 '
n—t, _2w-t _ ta._t-;ra:t(%a +B>——t’(£a+ﬁ>—(t—t')ﬁ=0.

t t '

Also
20—t _20—t_£—t2_,
t ¢ o

Hence m, =; and =, terminate in a straight line.
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5. The principal tangent €8 tangent to all circles described on
the radii vectores as diameters.

Fig. 5.

Let ap =p (Fig. 75), e and 8
being unit vectors along the axis P
and principal tangent. Then, if
the circle cut the tangent in T, /

and Tc be drawn to the center, L A

T(rc)="T(Fc)=T(§¥P);

.. 7' = }(p — ma)™. . A

Also

TC == TA 4 AF 4 FC
=—2f + ma + 4(p— ma),
1c* =[—2B+ ma+4 (p—ma)]".

Equating these values of Tc?,
we have, since 88a =0,

2B — 28Bp + mSap =0,
z’—zy+y£=0,

o' P!

which gives but one value for z.

6. To find the length of the curve.

It has been seen (Art. 62) that, if p= ¢(f) be the equation
of a plane curve, the differential coefficient is the tangent to the
curve. Hence, if this be denoted by p'=¢'(t), Tp'dt is an
element of the curve whose length will be found by integrating
Tp' with reference to the scalar variable involved between proper

l"nlts , or
8 30 ——f T
3 P

_y
P—'é;)a"‘yB,

For the parabola
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we have

P'=%"-+ﬁv
B sk

= fr+mi= [y—(” ;‘;”2 ! +§log<-’_/i(p;;-’/m):|;.

7. To find the area of the curve.

With the notation of the previous example, twice the area
swept over by the radius vector will be measured by (Art. 41, 7)
TVpp'dt. The area will then be found by integrating TVpp' with
reference to the involved scalar between proper limits and taking
one-half the result; or

¢
A~ do=1 [TVpp"
%
For the parabola

) A—&=%L%V(%a+yﬂ>ea+ﬁj,

or, since a3 = 90°, vy
v,
=" =

From the origin, where y, =0, to any point whose ordinate is
¥y, the area of the sector swept over by p is %’y“ = }xy; adding

the area %2y of the triangle, which, with the sector, makes up
the total area of the half curve, we have %xy, or two-thirds that
of the circumscribing rectangle. The origin may be changed to
any point in the plane of the curve, to which the vector is y, by
substituting the value p=+vy -+ p, in the equation of the curve,
p1 being the new radius vector ; we may thus find any sector area
limited by two positions of p,, the vertex of the.sector being at
the new origin. Thus, transferring to an origin on the principal
tangent, distant b from the vertex, p= b8 + p;; which, in the
equation of the parabola, gives

= ”’a+<y 08 p'=la+
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integrating, as before, between the limits y = b and y =0,
Vo o = Lo =
§f Vo' = ot = ey

87. Relations between three intersecting tangents to the Parabo-
la. [‘“‘Am. Journal of
Math.,” vol. i. p. 879. Fig. 76.
M. L. Holman and
E. A. Engler.]

Let py, pgy ps be the
vectors to the three
points of tangency, Py,
Py, Py [Fig. 76], and
m, 7, w3 the vectors to
8, Sgy 83, the points of
intersection of the tan .
gents. Resuming Equa- \'\51\
tion (216), where the
focus is the initial
point, and a and B are P,
unit vectors along the '
axis and the directrix,

p=2—§,<y*—p’)a+yﬂ N )

Since p* = — (Tp)?, and Saf =0, we have for the three points
Py, Py Py .T 1,,
= %(?h +p?)
1
Tp, = —(ys ? e e e e .
P2 21)(3/2 +p’) ®)
1
Tpg = — (¥3
Pa 21)(% +p’)
The vector along the tangent is

%G'f'B’
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and therefore
m=pyt+Ps= ﬁ(y:’ —pa+y:B+2 (’-ga + /3).

71=Pa+1’331=%)(ys"'1”)a+ysﬁ+ %G‘Fﬂ);

whence, equating the coefficients of « and 3,
2=%U—Y) w=%4(—Y),

whence, substituting, and by the cyclic permutation of the sub-
scripts,

1 5
m= 'é;(.’lsy: —p)a+ 3 +y)B
Ts=%(.’/1ya—1")¢+’}(.’ls+yx)ﬁ> e o .« (o).

1
g = ﬁ(?b.’h —p)a+3(n+9)B
From (b) ’

Ty Ty = ﬁ,(yup') G+ ]

TpsTPs=$(ys’+P’)(!/§+P’)» C e (@)

T"*"’P*=r}(-’/=’ +5) (v + 1)
and from (c)
(Tm)?= }p,(y: +0) (4 + 1)

(Try)? = ﬁ,(yup*)(yfw’w C e (@
(Tms)? = ;—%,(3{1’ +2*) (v + p°)

and from (d) and (e)
(Trs)® = Tp, Tpy

(Tr)?=TpTpsp « o o o o & .
(Tm)* = Tp; Tpy
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From (¢), it appears that the distance of the point of intersec-
tion of two tangents from the axis 13 the arithmetical mean of the
ordinates to their points of contact. From (f), that the distance
JSrom the focus to the point of intersection of two tangents is a
mean proportional to the radii vectores to the points of contact.

1st. If p; becomes a multiple of 3,
1
=55 Wi = P)atpB=18;
cez=Yy=1p.

Or, the parameter is the double ordinate through the focus, or
twice the distance from the focus to the directriz.

Fig. T1.

2d. If p, is the multiple of p, (Fig. 77), then p; — p, is a focal
chord, and
Zpg = p1y
or, from (a), ‘

w[gli(yf-p’)a+yxﬁ]=2ip(yf — e+ uB;

whence W= _n

="

v—-r uw
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or

Ny +0) =50y +r),
Ny +p'=0. ()

and
From (a) and (c)

Smypy = — 2—113(?/2.’/1 —17’)51;)(3/12 - =3+ ¥)n
1

=—217,(y1’+p’) (2 +2p)=0; (7)

or, a line from the focus to the intersection of the tangents at the
extremities of « focal chord is perpendicular to the focal chord.
The vectors along the tangents are

pp—m and pg— g,
and, from (%),

8(p1 — 73) (o2 — 75) = 8py pp + 75’ = 0,

or, the tangents at the eatremities of the focal chord are perpen-
dicular to each other.
Since, from (g),

NYe=—p4
we have

= %(?/13/2“‘172)“ +3(n+9.)B
=—pa+3(Nh+%)B

or, the tangents at the extremities of a focal chord intersect on
the directriz.

3d. If p; becomes a multiple of a (Fig. 78), y; =0, and from
(©) .
Ty = 57)(!/23/1 —pa+3(n+9)B

=—2a+%p, 0]

or, the subtangent is bisected ai the vertex.
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Also
2 __ .2
n—p=—fat 4o (U et up)
=¥, h
="2p 2/3'

Operating With S . 7l'3x
2 2
s"fa("fs—Pl)="{T‘—yT'=0,

or, a perpendicular from the focus on the tangent intersects it on

the tangent at the vertex.
Fig. 8.

Again, since =3 is parallel to the normal at p,, the latter may
be written, from (7),

am,:a:(—%a +%',3> =za+4y8;

whence

or
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hence, the subnormal i3 constant; and the normal i3 twice the
perpendicular on the tangent from the focus. ’
The normal at p; may be written

xmy=—2'a+ py,
or

x(-%a-}-%ﬁ) = —2'a+§11—o(y1’ —a+yB;
whence, from (b),
1
=2, and 2'= E;)(y,’+pg)=Tp, ;

or, the distance from the foot of the normal to the focus equals
the radius vector to the point of contact, or the distance from the
point of contact to the directriz, or the distance from the focus to
the foot of the tangent.

The portion of the tangent from its foot to the point of con-
tact may be written 2a 4 p,, in which z has just been found.
Hence

2a +4p; = %}(?/12 +p%a +2—lp(y1g — a4+ B,
or

- 2
2a+p1=%,l-a+y1/3, (@)

the portion of the tangent from the foot of the focal perpendicu-
lar to the point of contact is

1
—7"8+P1=ga—%15+%(yxg—lf)a'l'?hﬁ,
or

—rtm=Lasp, (k)
2p 2

or, comparing (j) and (%), the tangent is bisected by the focal

perpendicular, and hence the angles between the tangent and the

axis and the tangent and the radius vector are equal, and the

tangent bisects the angle between the diameter and radius wvector

to the point of contact. '
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(%) is also the perpendicular from the focus on the normal,
and shows that the locus of the foot of the perpendicular from the
Jocus on the normal is a parabola, whose vertex is at the focus of
the given parabola and whose parameter is one-fourth that of the
given parabola.

88. The Ellipse.

1. Substituting in the general equation p = za + yB8 the value
of y from the equation of the ellipse referred to center and axes

aty® + b*a? = ab?,
we have
p=2a+mi(a®—2aHig . . . . (220),
in which m = -l-’-: and a and B are unit vectors along the axes.
a

For unit vectors along conjugate diameters, the equation of the

ellipse becomes
p=xa+mi(a"—2Htg . . . . (221).

Again, if ¢ be the eccentric angle, the equation of the ellipse
may be written in terms of a single scalar variable,

p=cosd.a+sing.8 . . . . (222).

2. From Eq. (220) we have, for the vector along the tangent,

- m oz mae
a—mi(a® —z*) lzﬁ:a—ﬁm/g:a—?ﬁ
= X (ya —map) ;
hence, for the equation of the tangent line,
r=2a+YB+X(Ya—maB) . . . (223);
or, more simply, from Eq. (222), the vector-tangent is

—sing « a4 cos¢ « B,
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and the equation of the tangent is

w=0C08¢ ¢ a4 8in¢ « B+ 2(—sin¢ « a4 cos¢ . B), (224).

Since —sin¢ « a4 cos¢ . B is along the tangent, cos¢ « a +
sing « B and —sin¢ . a4 cos ¢ . B are vectors along conjugate
diameters.

89. Examples on the Ellipse.

1. The area of the parallelogram formed by tangents drawn
through the vertices of any pair of conjugate diameters is constant.

‘We have directly
TV[2(cos¢ « a+sing « B)2(—sing . a+cosd . 8)]

=4TVaf = a constant ;
namely, the rectangle on the axes.

2. The sum of the squares of conjugate diameters is constant,
and equal to-the sum of the squares on the axes.

For, since 8a8 =0,
(cosp + a+sing . B)?+(—sing . a4 cos¢ . B)2=a’+ B
8. The eccentric angles of the wvertices of conjugate diameters
differ by 902
The vector tangent at the extremity of
p=cos¢ .a+sin¢g . B (a)
—Bin¢ . a+008¢ . B-

is

This is also a vector along the diameter conjugate to p, and is
seen to be the value of p when in (a) we write ¢ + 90° for ¢.

4. The eccentric angle of the extremity of equal conjugate diam-
eters 18 45 and the diameters fall upon the diagonals of the
rectangle on the axes.
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5. The line joining the points of contact of tangents is
parallel to the line joining the extremities of parallel diam-
eters.

6. Tangents at right angles to each other intersect in the cir-
cumference of a circle. .

7. If an ordinate PD to the major axis be produced to meet the
circumscribed circle in Q, then

QD:PD::a:b.
8. If an ordinate PD to the minor axis meets the inscribed circle
in Q, then
QD:PD::b:a.

9. Any semi-diameter is a mean proportional between the dis-
tances from the center to the points where it meets the ordinate of
any point and the tangent at that point.

For the point p (Fig. 82) we have
p=cos¢ . a+sing . 8.

Also
OT = ZOP = 0Q } QT
=2z(cos¢ . a+s8ingd. )
=cos¢'.a+sing'. B+ t(—sing'.a+cosg’. B).
Eliminating ¢, 1
T s (e — )
or 1
OT = ZOP = — ————OP.
cos($—9)
But
: ON =2'oP = 0Q + QN
=a'(cosp.a+sind.f)
=cos¢'ea+sing'.84t'(—sing.a+ cosd.B)
Eliminating ¢,
z! = cos(¢ — ¢'),
or

oN = cos(¢ — ¢')oP;

+*. ON o OT = OP%,
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10. To find the length of the curve.

With the notation of Ex. 6, Art. 86, we obtain, from Eq.
(222),
p'=—sin¢ « atcosé . B,

Tp'=V/ (a? — b®) sin® ¢ + B3,
s—%:ff/(a’-— b*)sin’e + b*
% ’

which involves elliptic functions. If a =b, we have, for the
¢
circle, s — sy = | r=1r(¢ — ¢)-
#o
From Eq. (220), we obtain

p'=a— ml(a’ %) —h:,B,

a e:c’
8— = r—— ———
% .L;\/a’——x“\/ at

which may be expanded and integrated ; giving for the entire
curve

& 3¢t 3.3.5¢
2xa1— & — - — ete.
"“(1 2.2 2.2.4.4 2.2.4.4.6.6 em)’

& converging series. If e =0, we have, for the circle, 2.

11. To find the area of the ellipse.
‘With the notation of Ex. 7, Art. 86,
TVpp'=TV(cos¢ . a +8in¢ . B) (—sing « a4+ cose « B)
=TV(cos’¢ « a3 —sin’¢ . Ba)=TVaf;

or, since all\i =90 o
3 f 1rTVpp } wab.

%o

The whole area is therefore =ab.
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90. The Hyperbola.

1. Let o and B be unit vectors parallel to the asymptotes.
Then, from the equation,
_a+?

=g

=m,
we have, for the equation of the hyperbola,
,,-_-m+’£p C e e . (225

or, if a and 8 are given vectors parallel to the asymptotes,
p=tat+B L (2);

or, again, in terms of the eccentric angle,
p=seco . a+tan4>.. B.- . . . (227).
2. The equation of the tangent, obtained as usual, is from
Eq. (226),
p=ta+€+x(ta—g). ... (228),
B8

where ta — T is a vector along the tangent.

91 Examples on the Hyperbola.

1. If, when the hyperbola is referred to its asymptotes, one
diagonal of a parallelogram whose sides are the codrdinates is
the radius wector, the other diagonal is parallel to the tangent.

If (Fig. 79) ox = ta, xe =5, then

B

B B
t’

CP = la 4 Qx=ta-——t;
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but ta .__f is parallel to the tangent at » (Art. 90). ta.g.l_t3 and
ta _Lj are evidently conjugate semi-diameters.

Fig. 79,

2. A diameter bisects all chords parallel to the tangent at its
vertex.

Let (Fig. 79) cp be the diameter, ¢ corresponding to the

point . The tangent at p is parallel to ta _B and cp=ta 4 E
p'p" being the parallel chord, t t

cp'=co + oP'= a:(ta. +L?) + y(ta _g)

Also, if ¢' cdrrespoud to p;
cP'=t'a +§ H
o (@)=t ”:y=1

¢’
2 —y=1,

or
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Hence, for every point, as o, determined by «, there are two
points P’ and P", determined by the two corresponding values
of y, which are equal with opposite signs.

3. The tangent at », to the conjugate hyperbola is parallel to
cp (Fig. 79).

4. The portion of the tangent limited by the asymptotes is
bisected at the point of contact.

5. If, from the point o (Fig. 79), where the tangent at p meets
the asymptote, pN be drawn parallel to the other asymptote, then
the portion of PN produced, which is limited by the asymplotes, is
trisected at p and N.

We have B B

CN=2tat2B=t'a+5=2ta+ >,
¢ 2¢
cP=ta+ g H
. PN=CN—CP=ta—2£t9
and the equation of ss' is

—tatB _B
p—ta-}-?-}-z(tu 2t),

whence, for the points s, s,

6. The intercepts of the secant between the hyperbola and its
asymptotes are equal.

The vector along the tangent parallel to the secant is ta — l—:
Hence (Fig. 79)

CR' =70 =x<ta. +'£:) +y(ta—€)’
cr"'=2'B== (ta + /Zg) + y’(ta - g)a
coy=—y"

but op" = or' (Ex. 2), and therefore p''r" = p'r!
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7. If through any point " (Fig. 79) a line R"p'R' be drawn
in any direction, meeting the asymptotes in R" and B, then

P R". P'R' = PD'%,
8. If through p! " (Fig. 79) lines be drawn parallel to the

asymplotes, forming a parallelogram of which 'p" is one diagonal,
the other diagonal will pass through the center.

The vector from ¢ to the farther extremity of the required
diagonal is

! +§+(z' t")a +(t,, 1,>B=t' = ,n<t"“+ﬂ)

But t'"a +f—? is the vector from c to the other extremity of the
required diagonal.

9. If the tangent at any point P meet the transverse axis in T,
and PN be the ordinate of the point p; then

CT . CN=a,

¢ being the center and a the semi-transverse axis.
From Eq. (227), substituting in cr = cp + pr,

zsecp.a=secd.a+ttand .8+ y(tand sece .a+sec’p . B);

R |
% x_sec’«b,
and
CT . CN = (z8ece « a){secs « a) = of,
or

CT . ON = a?.

10. If the tangent at any point p meet the conjugate axis at T,
and PN' be the ordinate to the conjugate axis, then

cr'. oN' = b,

¢ being the center and b the semi-conjugate axis.
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92. The preceding examples on the conic sections involve
directly the Cartesian forms. A method will now be briefly
indicated peculiar to Quaternion analysis and independent of
these forms.

1. The general form of an equation of the first degree, or as
it may be called from analogy, a linear equation in quaternions, is

a,qb + a’qb'+ a"qb"+ ..... =c,

or

Zagdb=c, (a)
in which ¢ is an unknown quaternion, entering once, as a factor
only, in each term, and a, b, «; b; -----, ¢ are given quaternions.

It may evidently be written
38agb + ZVaqdb = Sc + Ve,

whence
=Sagb = Sc, )
SVagb=Ve. (c)
But’
Sagdb = S¢ba = S¢qSba + 8 . YgVba,
and

Vagd = V(8a + Ya) (8¢ + Vq) (8b + Vd)

=V.8q(Sa+ Va) (Sb+ Vd)
+ V(SaVy¢Sd + SaVqVb + VaVqSb + VaVgVbd)

= 8qVub + V(SaSb — Sa¥Vb + SbVa) Vg
+V.VaVgVb 4+ V. YaVbVg — V. YaVbVq

[Eq. (116)] = SqVab + V(SaSb — Sa Vb + SOVa — YaVb) Vg

+2VaS . VgVb

=8¢Vab+ V. a(Kb)Vg + 2VaS . VgVb.

‘We have therefore, from (b) and (c),

8¢ = Sq58ba + § . Vg3Vba,
Ve = S¢SVab + 3V . a(Kb) Vg +23Va8 . VgV,

or, writing

S8ab=d, 3Vab=3, 3Vba=38 Sqg=w, Vg=p,
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we obtain
8¢ = wd + 8p3)
Ye=wd+3V. a(Kd)p + 23Va8 . pVb.

‘We may now eliminate w between these equations, obtaining
VYeod—8c.8=d3Va(Kb)p — 38pd'+ d23Va8 . pVb

which involves only the vector of the unknown quaternion ¢, and
which, since V and 3 are commutative, may be written under

the general form
v =Vrp + 3f38ap,

in which y, a, a; ==, B, B; - are known vectors, » a known
quaternion, but p an unknown vector. This equation is the
general form of a linear vector equation. The second member,
being a linear function of p, may be written

- Vrp+3BSep=¢dp=vy . . . . (229),

where ¢p designates any linear function of p. If we define the
inverse function ¢! by the equation

¢~ (p)=p,
cop=9¢"ly,

the determination of p is made to depend upon that of ¢~

2." Without entering upon the solution of linear equations, it
is evident on inspection that the function ¢ is distributive as
regards addition, so that

$(p+p'+ - )=dp+dp'+ . . . (280).

Also that, a being any scalar,
dap=adp . . . . . . (281),
dgp=¢dp . . . . . . (282).

8. Furthermore, if we operate upon the form

¢p = 2BSap + Vrp

and
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with 8 . o X, o being any vector whatever,
8o¢p = 38(0f88ap) + 8o (V7p).
8(cB8ap) = B0 Sap = Spa8fc = 8(paSBc),

8(aVrp)=8[cV(8r+ Vr)p]= 8rSop + 8a(Vr)p
= 8r8pa — Sp(Vr)e = 8[pV(Kr)o].

But

and

Hence, if we designate by ¢'c,
¢'c = ZaSBo + V(Kr)e,

a new linear function differing from ¢ by the interchange of the
letters a and 8, and Kr for r, we shall have, whatever the vectors
p and o,

8(c¢p)=8(p¢'>).

Functions, which, like ¢ and ¢, enjoy this property, are called
conjugate functions. The function ¢ is said to be self-conjugate,
that is, equal to its conjugate ¢, when for any vectors p, o,

So¢p = Speo.

93. In accordance with Boscovich’s definition, a conic sec-
tion is the locus of a point so moving that the ratio of its dis-
tances from a fixed point and a fixed right line is constant.

1. Let r (Fig. 80) be the fixed point or Fig. 80.
focus, po the fixed line or directrix, and p
P
any point such that :)2 = e, the constant ratio °
P ;
or eccentricity. Draw ro perpendicular to ° F
the directrix, and let Fo=a, op=yy, PD=2%a
and FP=p. By definition,

Tp _ e
T(ep)

ot = e, (a)

or

ptra=a+yy.



202 QUATERNIONS,
Operating with 8 . a X, we have, since Say =0,

Sap + 20’ = o,
or
2*a* = (a? — Sap)®.
Substituting in (a)
dpf=e(a?—8Sap)? . . . . (283),

in which e may be less, greater than, or equal to unity, corre-
sponding to the ellipse, hyperbola and parabola.

\ Fig. 8l.

o] Al F/ N [o] LAYY

2. For the ellipse, Fig. 81, putting p=xa for the points
A and A] we have

e e

r= and z=— )
+e 1—e
or, since p = Za = ZFO,
FA = € FO,
14e
e
FA!= FO
1—e
whence
2e
AA'=2a= FO
1—¢
and therefore
1—¢?
FO = a,
e
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which furnish the well-known properties of the ellipse,

FA=a(l—e),

FA'=«(1 +¢€),
CF = qae,
A0=1 —%a,
co=2,

e

8. Changing the origin to the center of the curve, let cF=a';

- l—_:e)a; whence

a=1 ;e,uf Substituting these values of p and a in
o’ p? = &*(a* — 8ap)*,
remembering that o'* = — a?e? we obtain

a?p'? + (Sa'p')i=—at(1—¢&),
or, dropping the accents, ¢ being the initial point,
alp? + (Sap)!=—at(l—e?) . . . (284),

the equation of the ellipse in terms of the major axis with the
origin at the center. If p coincides with the axes, Tp=a or b,
as it should.

4. Equation (234) may be deduced directly from Newton’s
definition, thus: let cr =a (Fig. 81) as before, F and ¥' being
the foci, and cP =p. Then

FP=p—a, FP=p-+a,
and, by definition,
FP+4FrP=2q
as lines; or
T(p— a) +T(p +a) = 2a,



204 QUATERNIONS.

a being the semi-major axis. Whence

. '\/W =2a— ‘\/T—l—a)’.
Squaring

—p+28pa—d?=4a'—4aV—(p+a)’—p*—28pa —d,
Spa—at=—aV—(p+a)?
Squaring again

(8pa)? — 2*Spa + a* = — (o + 28pa + o),
a’p®+ (Spcl.)’I =—a*—a’d,

0t + (Spa)? = — a*(1 — &).

or, as before,

94. 1. The equation of the ellipse
a’p* +(Sap)’=—a'(1 —¢")
may be put under the form

_a’p+aSap —1:
s"’[ di—e |V

or, in the notation of Art. 92, writing

_@p+aSap _
ad(l—e) s

the equation of the ellipse becomes

Spdp=1 . . . . . . (285).

2. By inspection of the value of ¢p it is seen that, when p

coincides with either axis, p and ¢p coincide.
Operating on ¢p with 8 . o X, we have

— _@’Sop + SoaSap,
SG¢P a4(1_ez) 9
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operatingoncpo-:—a:"'(%-?;'withs.px,wehave
— — 88po + SpaSas,
h Spdo = adi—e) °
ence
Spdr=Sodp . . . . . . (236),
and ¢ is self-conjugate.

3. Differentiating Equation (235), we have

8dpp + Spddp =0,
Sdpp + Spdp =0, [Eq. (232)]
Spddp + Spddp = 28ppdp =0.  [Eq. (236)]
If x be a vector to any point of the tangent line,
x=p+adp,
8pd(x—p)=8(x—p)$p=0, (a)
Sxdp=Spdp=8ppr=1 . . . . (287)

whence

or

is the equation of the tangent line.

From (a) we see that ¢p is a vector parallel to the normal at
the point of contact, being parallel to p only when p coincides
with the axes, as already remarked.

4. To transform the preceding equations into the usual Car-
tesian forms, let i be a unit vector along ca (Fig. 81), and j a
unit vector perpendicular to it. If the codrdinates of p are z
and y, then, since a = cF,

p=2i+Yj,
and
__ap +aSap _ _ a*(zi +yj) + aei8 . aei(zi + )
=== ai—¢)
_dlzi(l1—€)+ayj
a'(l—2¢%) g
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. b
or, since 1 — ¢’ =—
a

—_ (% u\.
- (4.124_b2 ’ . .
. Sppp=1=—8. (zi+yj)(%+‘%’2),
and
a?y? + ba? = a?br.

Again, if ' and ' are the codrdinates of a point in the tangent,

r=a'i+yj;
. Srgp=1 ——S<m+w)( ),
and
ayy'+ bz’ = alb’.

The above applies to the hyperbola when e > 1, that is, when
1—-é=— b—, giving the corresponding equations

aty® — B2 =—a®b?,
atyy'— blaz' = — a?bt.

95. Examples.
1. To find the locus of the middle points of parallel chords.

Let B be a vector along one of the chords, as rQ (Fig. 82),
the length of the chord ‘being 2y, and let y be the vector to its
middle point ; then

p=vy+yB and p=y—yB
are vectors to points of the ellipse, and

S(y+yB) o (y+yB)=1,
S(y—yB)d(y—yB)=1;

whence, expanding, subtracting, and applying Equation (236),
Sy¢B=0,
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the equation of a straight line through the origin. Since ¢8
is parallel to the normal at the extremity of a diameter parallel
to B, the locus is the diameter parallel to the tangent at that
point.

2. Equation of condition for conjugate diameters.

Denote the diameter op (Fig. 82) of the preceding problem,
bisecting all chords parallel to 8, by a. Then

SagB =0,
SBpa=0.

In the latter, B is perpendicular to the normal ¢a at the ex-
tremity of a, and is therefore parallel to the tangent at that
point; hence this is the equation of the diameter bisecting all
chords parallel to a. Therefore, diameters which satisfy the
equation Sa¢pB =0 are conjugate diameters.

or

8. Supplementary chords.
Let pp' (Fig. 82) and pp' be conjugate diameters, and the
chords pp, Pp' be drawn. Then, with the above notation,

DP =a — f3,
D'P=a+ﬁ,

8(a+B)¢(a—B)=8(a+B)(¢a — ¢B)
= S(agpa — aB + Ba — BPB).

and
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But
Saga=1, SB¢B=1, Ba¢B==580¢a;
. 8(a+pB)p(a—PB)=0.
Hence, if pp is parallel to a diameter, pp’ is parallel to its
conjugate.

4. If two tangents be drawn to the ellipse, the diameter parallel
to the chord of contact and the diameter through the intersection
of the tangents are conjugate. )

Let 7Q (Fig. 82) and TR be the tangents at the extremities of
the chord parallel to 8, and or = w. Then

0Q=2xa+yB, OR=2xa+y'B.
From the equation of the tangent Sx¢p =1, we have

Srp(za+yB)=1,
Sz (va+y'B) =1.

Expanding and subtracting
S7¢B =0.

Hence, Ex. 2, = and 8, or op and op, are conjugate. The
locus of T for parallel chords is the diameter conjugate to the
chord through the center.
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5. If qoQ' (Fig. 82) be a diameter and Qr a chord of contact,
then is Q'R parallel to or.

RQ being parallel to 8, and 0Q' = — 0q, we have

RQ=2yB, RQ'=yB—xa—za—yB;
whence, directly RQ' = — 2za ; as also SrQ¢$rQ' =0, RQ and RQ'
being supplementary chords.

6. The points in which any two parallel tangents as Q'T) Qr
(Fig. 82) are intersected by a third tangent, as Tx! lie on conju-
gate diameters.

The equation of R’ is Sr¢pp =1, and that of Q'r’ is Sx'¢p'=1.
For the point T, # = ='; whence, by subtraction,

8z (p —p')=0.
7. Chord of contact.
The equation of the tangent,
Sppr =1,

is linear, and satisfied for both @ and r. Hence, writing o for p
as the variable vector, = being constant,

So¢pr=1
is the equation of the chord of contact.

8. To find the locus of T for all chords through a fized point
(Fig. 82).
Let s be a fixed point of the chord rQ, so that os=o=a
constant. Then
Sopr = Srpo =1,

a right line perpendicular to ¢o, or parallel to the tangent at the
extremity of o0s, and the locus of T for all chords through s.
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9. Any semi-diameter is a mean proportional between the dis-
tances from the center to the points where it meets the ordinate of
any point and the tangent at that point.

op (Fig. 82) and or being still represented by B8 and e, let
or=2'a and 0@ =p=xa + yB. Then from the equation of the
tangent, Sr¢p = 1, we obtain '

8a'ag(za +yB) =1;

whence, since Sa¢p8 =0,

zz'Sada =1,
or
zx'=1;
‘e Za . w'a=a’,
or

ON . OT = OP2.

10. If oo’ (Fig. 82) and »p' are conjugate diameters, then are
ep and D' proportional to the diameters parallel to them.

‘With the same notation

pP=a—p, p'p=a+pB,

- oE=m(a—pf), oF=n(a+p).

whence
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From the equation of the ellipse
: Sm(a—pB)¢m(a—pB)=1, (@
and
Sn(a+B)¢n(a+p)=1. )
Now, from (a), since 8348 = Sadpa =1 and 8Bpa = 8adpB =0,
2mi=1.
Similarly, from (b),
2n%=1;
SFeM=n.

Also
pp:D'P::T(a—pB): T(a+p)
::Tm(a—B) : Tn(ae+ B)
::OE: OF.

11. The diameters along the diagonals of the parallelogram on
the axes are conjugate; and the same 18 true of diameters along
the diagonals of any parallelogram whose sides are the tangents at
the extremities of conjugate diameters.

12. Diameters parallel to the sides of an inscribed parallelo-
gram are conjugate.

Let the sides of the parallelogram (Fig. 83) be

PP'=a., PQ=B,
and let
oP=p, O0Q=p!
Then
or'=p+a, 0Q=p'+a, o—p=48.
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From the equation of the ellipse, Sop=1, we have for Q' and p'

8(p'+a)¢(p'+a)=1,
8(p +a)$(p +a)=1;
whence, since Sppp = 8p'¢p' =1,
28a¢p'+ Saga =0,
28a¢p + Saa = 0.
8p' pa — Bppa =0,
8(p'— p) pa = 8Bpa = 0.

13. The rectangle of the perpendiculars from the foci on the
tangent i8 constant, and equal to the square of the semi-conjugate
axis.

Subtracting

or

Let the tangent be drawn at r (Fig. 83) and or =p. Then
¢p is parallel to the normal at r, that is, to the perpendiculars
FD, ¥'D! Hence, oF being a,

op'=2'¢pp —a,
oD = a + Z¢p,

which, since p and p' are on the tangent, in Sr¢p =1 give

8(z'¢p—a)dp=1,
8(a + z¢p)pp=1,

#'(¢p)* =1+ Sa¢p,
% (¢p)'=1—Bagp;

-or
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whence .
Tx'dp =F'D'= T+T¢P,
Tzdp =FD = T-l———‘l;spﬂe,
and .
. ¥D X F'D' = (%P)
u
a’p + aSap\* _ a*(a’p*) +20*(Sap)’ + o (Sap)’
(¢p)'= (" a1 — eﬂ)) a*(1—é)?

or, substituting a?p® from Equation (234) and o= —a?é?,

_ Sap)'—at
@A=&)
1 —(Sagp)?=1 —[a"s;’zl'*- ?ap _‘(:ap)
<. FDXFD' =T —i?ap)s(zf:), =a*(l—~e)="0

14. The foot of the perpendicular from the focus on the tangent
8 in the circumference of the circle described on the major axis.

To prove this we have to show that the line op (Fig. 83) is
equal to a. Now

ODb = a + Z¢p
¢p (1 — Sadp)
(¢p)*

from the preceding example. Hence

28a¢p(1 — Saghp) + (1 —Sagp)*

=a+4

(on)t =+ —— 5y’ @)
1= (Sadp)'_ . a'—(Sap) a1 —e)
=Tt T T

=—a'¢—a'(l —e)=—a';
.~ OD=a.
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The Parabola.

96. 1. Resuming Equation (233) and making e=1, the
equation of the parabola is

dpP=("—8ap)? . . . . . (2388),
which may be written
p*+28ap — a’z(Sap)g_ 1

(12

Sp P+2a—a"aSap:]= 1;

?

or

o

in which, if we put
gp =L Sop

£
a!

we have for the equation of the parabola
Sp(¢pp+2aH)=1. . . . . (239),
and, as in the case of the ellipse,
Sopp=S8po. . . . . . (240).
Operating on ¢p by 8 . a X, we obtain

Sapp=0 . . . . . . (241);

hence, ¢p is a perpendicular to the awis.
Operating on ¢p by 8. p X

2 __ -3 2
spop == B0 aigpyr. L L (22).
2. Differentiating Equation (239), we have
28ppdp + 28dpa! = 0.

For any point of the tangent line to which the vector is w,
7= p + 2dp,
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from which, substituting dp in the above,

8pp(r —p) +8(r—p)at=0,
8(pdm — pdp +ma~'—pa~!) =0; (o)

or, since Spp =1 — 28pa~? [Eq. (239)],
Srdp — 1 + 28pa~! + Sra~! — Bpa~1 =0,

whence

Sr(dp+a)+8pal=1. . . . (243),
the equation of the tangent line.

8. From (a) we obtain

8(r—p)(¢p+a)=0;

or, since = — p is a vector along the tangent,
¢p+a!

8 in the direction of the normal.

4. If o be a vector to any point of the normal, the equation
of the normal will be
c=p+a(dp+al). . . . . (244).

5. The Cartesian form of Equation (239) is obtained by

making
p=wi+yj, a=ro (Fig.80)=—pi;

p

oy =2pz+p’

the equation of the parabola referred to the focus.
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97. Hxamples.
1. The subtungent is bisected at the vertex.

Fig. 84.

O

‘We have (Fig.84) ¥r = 2a, which in the equation of the tangent
87(¢p +a”') + 8pa~' =1
8za(¢p+a')+8a'p=1.
But Sa¢pp = 0; hence

gives

z+8a7lp=1; (o)
multiplying by a
2o+ aSa~lp =a,
(#—%)a=a—%a—aSa"p
=}a—aSalp,
AT =— A¥ —aSa"lp.
But the value of ¢p gives

d'¢p=p—a'Sap;
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and, since ¢p is a vector along Mp and a~'8ap a vector along ry,
from p = FM + MP we have

FM = a"'8ap = aSa"!p, 0)
MP =a'dp; ©
s AT = — AF — FM == — AM,
or, as lines,
AT = AM.

2. The distances from the focus to the point of contact and the
intersection of the tangent with the axis are equal.

Ta=a— a.Sa."lp,

 (#1)* = (a — aBa~lp)?
= (a — a~'8ap)?
- (a’ — ’Sap)’

[Eq. (238)] =p"; :

‘e FP=FT.

or (Tig. 84),

8. The subnormal is constant and equal to half the parameter.

The vector-normal being ¢p+ a! (Art. 96, 8), we have

(Fig. 84)
PN=2(¢p+a™);

but
PN = PM + MN
= —a’¢pp + Za ; [Ex. 1,(c)]
- 2(¢p+a7l)=—d’¢p + 2a,
z2=—d'=zd’,
or
r=-—1, za=—a;

or, the distances MN and Fo are equal, and the subnormal = p,
a constant. *

4. The perpendicular from the focus on the tangent intersects
it on the tangent at the vertex, and oQ = mp (Fig. 84).
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Since (Ex. 2) Fp = FT = PD, FD is perpendicular to Pr or par-
allel to pN. Otherwise :

NP =—2z(¢pa+a )= a’(¢p +a7?) (Ex. 3)
= a’¢p + a = MP + FoO, [Ex. 1, (¢)]

o’¢pp + a = FO + OD = FD.
But

$FD =rQ=4}d'¢p+4a
— da'gp+ra;
.. dalpp=aQ=73mP.

5. To find the locus of the intersection of the perpendicular
from the wvertex on the tangent and the diameter produced
through the point of contact.

Fig. 84
8 D P
Q
T (o] A F M N

Let rs=o (Fig. 84) be a vector to a point of the locus.
Then
FS = FA + AS = FP - PS,

c=t4a+2(ép+a)=p+aa
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Operating with X 8 . ¢p, then, since Sa¢pp =0 [Eq. (241)],
2(¢p)* = Spp =a’(¢p)*; [Eq. (242)]

scoz=d
and
o=4a+a(gp+a) = Fa+a'dp,

or .

o — Ja=d'¢p.

Operating with X 8 . a
S8(c—$a)a=0,
8ca = — §(Ta)?,

or [Eq. (180)], the locus is a right line perpendicular to the
axis and §p distant from the focus.

6. To find the locus of the intersection of the tangent and the
perpendicular from the vertex.

If the origin be taken at the vertex, then since ¢p 4+ a~'is a
vector along the normal, the equation of the locus will be

m=a(¢p+a). (@

To eliminate x, operate with 8 . a X which gives

2 =8ar, whence Salwr=— %
a

To eliminate p, the equation of the tangent, Sx(¢p + o)+
8pa~!=1, for the new origin becomes

S(ﬂ + g)(d)p +a 1) 4 8pa~1=1,

or

-

287¢p +28a~'r + 28a"lp =1.

Operating on (a) with X 8 . ¢p, whence Sr¢pp = 2(¢pp)?, the
preceding equation becomes

22 (¢p)? —-2a—f+28a'lp =1. ()
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Also [Eq. (242)] Spép = a®(¢p)?, which, in the equation of
the parabola Sp(¢p +2a~!)=1, gives

@ (¢p)? +28ap =1. ©
‘Whence, from (b) and (c), by subtraction,

2%
2alx +at’

(¢p)*=
But, from (a),

?—2287a '+ 22a"? 22 1
(¢P)’= 1‘:, = =a—;2+;2°

Equating these values of (¢p)?, and substituting the value of z,
27*8ar — a’7* + (Sar)* =0,

which is the equation of the locus required. To transform to
Cartesian coordinates, make

r=zi+yj, and a=ai,

whence
r=—E+y), Sar=—ax, od=-—d
and
b
¥=—
-2
2

the equation of the cissoid to the circle whose diameter is the
distance from the vertex to the directrix.

7. If »e' (Fig. 75) be a focal chord, and pa, PA' produced
meet the directriz in D) , then will p and »'p' be parallel to AF.

AD'= — ZAP = A0 + 0D}
9’(5—;0)— g Tr
Operating with 8 « a X
2(a® — 28ap) = ol (a)
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Now ¥p=p and ¥p'= —2'p are vectors to points on the
curve, and hence satisfy its equa-
tion. Whence [Eq. (238)] Fig: 15 (bis).

o¥p? = (o® — 8ap)?, D
z"%a?p® = (a® + 2'Sap)?; /
.t 2%(a® — SBap)? = (a*+ 'Sap)*; T
c
or
z'(o® — Sap) = a* + 2'Sap,
. z'(a®—28ap)=al. o AN/F
Hence, comparing with (a), , for
T=1,

or, the sides produced of the
triangle APF are cut propor-
tionately, and therefore p'p' is
parallel to AF.

8. If, with a diameter equal to three times the focal distance,
a circle be described with its center at the vertex, the common
chord bisects the line joining the focus and vertex.

The equation of the curve being
a’p? = (o” — 8ap)?, (a)
that of the circle whose center is Ao (Fig. 75), referred to F, is

of the form [Eq. (210)]
T(p—7) =T,

T(P—‘g) =T4a;

2
o0 (P_g) = fga’,
p*=S8ap + gy o’

or, by condition,

which, in (a), gives .
a

Sap = ‘Z,
which is the proposition.
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98. The Cycloid.

1. Let a and B be vectors along the base and axis of the
cycloid and T8 =Ta=r, the radius of the generating circle.
Then, for any point p of the curve,

2=170 —r sinf = r(6 — sinb),
y=r —rcosf=r(1—cosb),

and the equation of the cycloid is
p=1(6 —sind)a + (1— cosb)p.
2. The vector along the tangent is
(1—cosf)a+sinf . B,
and the equation of /the tangent is
7=(0 —sinf)a + (1— cosf)B + t[ (1—- cosh)a + sind . B].

8. The vector from ¢ to the lower extremity of ‘the vertical
diameter of the generating circle through p is

PC=—(1—¢os6)B +sinb . q,
and, from the above expression, for the vector-tangent er,
S(pc . PT)=0;

hence pc is perpendicular to the tangent, or the normal passes
through the foot of the vertical diameter of the generating cir-
cle for the point to which the normal is drawn, and the tangent
passes through the other extremity.

4. If, through p, a line be drawn parallel to the base,
intersecting the central generating circle in Q, show that
PQ = r(r—0) = arcQa, A being the upper extremity of the
axis.
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5. With the notation of Ex. 6, Art. 86,

p' =(1—cosf)a+ sinb . B,

. p=—[(1— cosd)* + sin*6]"*,
Tp' = rv/1— 2cosf + cos?6 + sin’ = r V2 — 2 cosé
=2rsin}6;

0
s—8={2rsin}bf= [4roos«}0];n_ =38r,
m
the length of the entire curve.

6. With the notation of Ex. 7, Art. 86,

TVpp'=TV[ (6 — sinf)siné . af + (1— cos 0)%Ba]
= TV[ (6 sin6 — sin’ — (1— cos§)*JaB
=r’(03in0+2cos€-— 2).

A—Ao=r’f(0$in0+20030—2)
2T

. . 0
= [—(smo — 6 cosd +2sind — 26)
2 2w

= [g(flsino —6cos6— 20)]“: $nr,

am

the whole area of the curve.

99. Hlementary Applications to Mechanics.

1. If b be the magnitude of any force acting in a known di-
rection, the force, as having magnitude and direction, may be
represented by the vector symbol 8, which is independent of
the point of application of the force. In order, completely, to
define the force with reference to any origin o, the vector oa=a,
to its point of application A, must also be given. For concur-
ring forces, whose magnitudes are bl b ... , we have, for the
resultant, 8 = 38, which is true, whether the forces are compla-
nar or not, and is the theorem of the polygon of forces extended.
For two forces, 8 =f' 48" ; whence 8= "+ B' + 288'8", or
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B=0" 40"+ 2b'Y" cosh, which is the theorem of the parallelo-
gram of forces. For any number of concurring forces, the con-
dition of equilibrium will be 38'=0. For a particle constrained
to move on a plane curve whose equation is p= ¢(¢), dp being
in the direction of the tangent, since the resultant of the ex-
traneous forces must be normal to the curve for equilibrium, we

have
8dp3B'=8dpf = 0. (a)

2. Ifoa'=aq) and B'is a force acting at o/ then TVa'8'=a'b’' sind
is the numerical value of the moment of the couple B8' at o' and
—pB' at o. Representing,' as usual, the couple by its axis, its
vector symbol will be Va/8! If — B’ act at some point other
than the origin, as c¢; and oc'=y', the couple will be denoted by
V(a'—9")B8! From this vector representation of couples, it fol-
lows that their composition is a process of vector addition; hence
the resultant couple is 3V(a'—¢')B; and, for equilibrium,
SV(a'—¢")B'=0. If the couples are in the same or paralle]
planes, their axes are parallel and TS =3T. Since a'—+/ is
independent of the origin, the moment of the couple is the same
Jor all points. Since V(a'— y')B'= Va'B'—Vv'B, the moment of
a couple is the algebraic sum of the moments of its component
Jorces. If the forces are concurring, and o' is the vector to
their common point of application, 2Va'/Af'= V3d/f'= Va'38'=
VYa'B, or the moment of the resultant about any point is the sum -
of the moments of the component forces. 'When the origin ig on
the resultant, o' coincides with 8' in direction, and Va/8=10; or
the algebraic sum of the moments about any point of the resultant
is zero. If a single force B' acts at A} we may, as usual, intro-
duce two equal and opposite forces at the origin, or at any other
point ¢, and thus replace 8',. by B, and Va'B, or by B';: and
V(a'—y")B' If { be a unit vector along any axis oz through the
origin, then the moment of B’ acting at A} with reference to the
axis 0z, will be —88'%', or — 8 . {VB'a! If B'and { are in the
same plane, in which case they either intersect or are parallel;
or, if the axis passes through a} there will be no moment: in
these cases, a) B’ and { are complanar, and — 88'a'{ = 0.
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3. If the forces are parallel, their resultant 8 = 3g8'=3b'US'
=TUB3b'; and, therefore, for equilibrium, STB'=3b'=0. The
moment of a force with reference to any axis oz through the
origin being — 88'a'{, and the moment of the resultant being
equal to the sum of the moments of the components, we have
8Baf{=38p"a'¢, which, for parallel forces, becomes 8(3b'. US . af)
= 8(UB3d'a . {), which, being true for any axis, is satisfied
for 3b'. a = 3b'a';

()
=% ®

which is independent of UB, and hence is the vector to the cen-
ter of parallel forces. When 3b'= 0, the above equations give
B = 0 and a = w, the system reducing to a couple. For a sys-
tem of particles whose weights are w] w)' -----, we have the vec-
Sw'a’
Sw'
Sw'(a — a')=0; whence, if the particles are equal, the sum of
the vectors from the center of gravity to each particle is zero; and,
if unequal, and the length of each vector is increased propor-
tionately to the weight of each particle, their sum is zero. For

tor to the center of gravity a = From this equation,

equal particles, a = w'3a
Sw'

equal particles is the mean point (Art. 18) of the polyedron of

which the particles are the vertices. For a continuous body

whose weight is w, volume v, and density p at the extremity of

Spdva’

Spdv

if the density is a known function of the volume. For a homo-

!

geneous body, a = zzd;: ,

or solids, v representing a line, area or volume. Thus, for a
plane curve p= ¢(t) =a] dv=ds=Tdp=Te'(¢)d¢ and

, Or the center of gravity of a system of

, in which = may be replaced by the integral sign

a=

which is applicable to lines, surfaces

~ fsorsa

. (c)
f To' () de
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4. Qeneral conditions of equilibrium of a solid body. Let
the forces 8! B!' -----, act at the points A! Al ... of a solid body,
and oA'=a) 0A"=a! ... Replacing each force by an equal
one at the origin and a couple, the given system will be equiva-
lent to a system of concurring forces at the origin and a system
of couples. Hence, for equilibrium,

3p'=0, (@
SVa/f'=0. (e)

Let ¢ be the vector to any point x. Then, from (d),
V. {328'=0, and therefore, from (e), V. {38'= 3Va'B'; whence

3VR'a'— IVB'é = SVB' (a'— ¢) = 0. @))

Conversely, £ being a vector to any point the resultant couple,
for equilibrium, is IV (a'— §)B8'=0; .. 3Vad/f'=0 and 38'=
Therefore (f) is the necessary and suﬂiment condition of equl-
librium.

This condltlon may be otherwise expressed by the principle
of virtual moments. Let 8} 8}----- be the displacements. Then
the virtual moment of B' is — 88'¢'; and, for equilibrium,
388'8'=0. This equation involves (d) and (e¢). Thus, if the
displacement corresponds to a simple translation, 8'=8"= 8"’
= etc. = a constant, and we may write ZSB'%'= S33p'=
whence, since & is real, 38'=0. Again, if the dlsplacement
corresponds to a rotation about an axis {, { being a unit vector
along the axis,

ale= {1 ! =N (St + VEa!) = — {8La! — £ VLl

the last term being a vector perpendicular to the axis. Fora
rotation about this axis through an angle 6, this term becomes

9
- L’%F {Via'= — ¢ cos0 Via'+ 8inf Vo) and o' becomes
aly= — {8fa’'— ¢ cosd V{a'+ sind Via]
which, for an infinitely small displacement,

= —{8la'— {V{o'+ 6V{a!
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Placing the scalar factor under the vector sign and writing ¢
simply for 6¢, to denote the indefinitely short vector along oz,

a+8=0a'4Via';

or, &8'= V{a! Hence 28,8'8’ 38B'Via'=8{3Va'B'; or, since Z is
not zero, 3Va'f'=

5. Illustrations.

(1) Three concurrent forces, represented in magnitude and
direction by the medials of any triangle, are in equilibrium.
(See Ex. 2, Art. 17.)

(2) If three concurring forces are in equilibrium, they are
complanar. By condition, B'+4 8"+ B"'=0. Operating with
S . 8'8"x, we have S8'8"3"'=0

(8) In the preceding case, operating with Y. 8'Xx, we have
YB'B"+V@'3"=0; whence, since the forces are complanar,
TVBIB",_ TVBIBI" or blb" Bln(B; ﬁ") b'b"l Sm(ﬁ’ ﬁ"') A Slm-
ilar relation may be found for any two of the forces; whence

b':0": 0" :8in(B) B"): sip(ﬂ{ B'":sin(B; B').

(4) If two forces are represented in magnitude and position
by two chords of a semicircle drawn from a point on the circum-
ference, the diameter through the point represents the resultant.

(5) A weight, w) rests on the arc of a vertical plane curve,
and is connected, by a cord passing over a pulley, with another
weight, w! Find the relation between the weights for equili-
brium.

(a) Let the curve be a parabola, and the pulley at the focus.
Then, from Eq. (a) of this article, the equation of the curve be-

ing p =5 (4*~2)a-+y, we have

S(%a-l—ﬁ)( wa+ 2, ">=0,
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in which 7 = radiu# vector. Hence

Y Y% o Y
pw +p'rw +w =0,
or, since r=2x+4 p, w'=w!'" Hence, if the weights are equal,
equilibrium will exist at all points of the curve.

~ (b) Let the curve be a circle and the pulley at a distance m

from the curve on the vertical diameter produced. With the
origin at the highest point of the circle, p = za 4+ V2rz — 2°8.
Hence, r being the distance of the pulley from w]

(152 ) (e BEBERe o,

. "

i

(c) Let w be placed on the concave arc of a vertical circle,
and acted upon by a repulsive force varying inversely as the
square of the distance from the lowest point of the circle. To
find the position of equilibrium. The origin being at the lowest
point of the circle, and r the distance required, let » be the -

intensity of the force at a unit’s distarce; then g will be its
intensity for any distance r, and

oo 52 )
whence
3| PR
= Eﬂ
(d) Let w' rest on a right line inclined at an angle 4 to the
horizontal, and connected with ' by a cord passing over a pul-
ley at the upper end of the line. Find the relation between the
weights. With the origin at the lower end of the line, its equa:
tion is p==a. If B is in the direction of w] then Sa(w'S8+w'"a)
=0; .. w'=w'sing.

(6) "To find the center of gravity of three equal particles at
the vertices of a triangle.- a, B, c being the vertices, the vector




APPLICATIONS TO LOCI. 229

from A to the center of gravity of the weights at A and B is
4AB =ADp. The vector to the center of gravity of the three
weights is 3(AB 4 Ac) = §aB +2pCc = $aB+2(—$AB+AC) ;
.*. =4, and the required point is the center of gravity of the
triangle.

(7) Find the center of gravity of the perimeter of a triangle.

(8) Find the center of gravity of four equal particles at the
vertices of a tetraedron.

(9) Show that the center of gravity of four equal particles
at the angular points of any quadrilateral is at the middle point
of the line joining the middle points of a pair of opposite sides.

(10) The center of gravity of the triangle formed by joining
the extremities of perpendiculars, erected outwards, at the mid-
dle points of any triangle, and proportional to the corresponding
sides, coincides with that of the original triangle. Let aBc be
the triangle, Bc =2a, cA =28 and ¢ a vector perpendicular to
the plane of the triangle. Then, if m is the given ratio, B the
initial point, and Ry, R;, R, the extremities of the perpendiculars
to BC, CA, AB, respectively,

BR; = a + Mea, BRy=2a+ B+ meB, BRy=a+ B — me(a+B);
. $(08+ BB+ B8) = § (40 + 28) = #[2a + 2(a + B)]-

(11) To find the center of gravity of a circular arc. The
equation of the circle p=7(cosf .a+sinb . pB), gives dp=
r(—sinf « a4 cosd . B)dl;

. _f¢(0)m¢'(o)do_fr(eoso.a+sin.9.p)do
AT fT¢'(0)d0 ; fdo '

For an arc of 907 integrating between the limits ’—2" and 0,
o= 2_"(41 + B), the distance from the center being 2rye ; which
w m
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may be obtained directly also by integrating between the limits

15 and —Z. For a semicircumference or arc of 605 we have, in
like manner, 2r and {‘}_r
m ™

(12) If a, B, y are the vector edges of any tetraedron, the
origin being at the vertex, then p —a; 8— 1, a — 8 are lines of
the base, p being any vector to its plane. Hence this plane is
represented by 8(p —a)'(B—7y) (e —B8) =0; ... Sp(VaB +
Vya + VBy) —SafBy=0. If § be the vector perpendicular on
the base,

S
d=a(Vaf +Vya+ VAN =v5 1 1?/?;’ F Vya'
and, taking the tensors,
T(VaB + VBy + Vya) = (-;);1—:01' = 2area base.

But VaB + VBy + Vya + YBa.+4 VyB + Vay =0, in which the
last terms are twice the vector areas of the plane faces. The
sum of the vector areas of all the faces is therefore zero. Since
any polyedron may be divided into tetraedra by plane sections,
whose vector areas will have the same numerical coefficient, but
have opposite signs two and two, the sum of the vector areas of
any polyedron is zero. These vector areas represent the pres-
sures on the faces of a polyedron immersed in a perfect fluid
subjected to no external forces. For rotation, since the points
of application of these pressures are the centers of gravity of
the faces, to which the vectors are

$@+B+7y), ¥B+a), Iy+A8), $(a+7v),

we have the couples

—3V{(a+B+7)(VaB+VBy+Vya) + (a+ B)VBa+ (B +v)
VyB + (y + o) Vay}
=—}V(aVBy + BVya + yVaf),

since aVofB + aVBa =0, etc. But, Equation (123), this sum is
zero. . Hence there is no rotation.
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100. Miscellaneous Examples.

In Fig. 58, r, A and K are collinear.
In Fig. 58, AD?*—AE?=4B?—2aC%

. In Fig. 18, if the lines from the vertices of the parallelo-

gram through o and p are angle-bisectors, omirp is a
rectangle.

If the corresponding sides of two triangles are in the same
ratio, the triangles are similar.

B, a, y being the vector sides of a plane triangle, if 8=a4-y,
show that b*=c*—ca cos B4ab cosc.

The sides Bc, ca, AB of a triangle are produced to o, E, F,
8o that co = mBC, AE = nca, BF = paB. Find the inter-
sections Q;, Qg, Q; of EB, FC; FC, DA ; DA, EB.

In any right-angled triangle, four times the sum of the
squares of the medials to the sides about the right angle
is equal to five times the square of the hypothenuse.

If ABc be any triangle, M its mean point, and o any point
in space, then
AB?+ BC?+4 ca? = 3 (04’4 0B+ oc?) — (8 om)?.

If aBcp be any quadrilateral, m its mean point, and o any
point in space, then
AB% 4 BC?+4 cD?+ Da?

= 4(0a*+ oB?+ oc?+4 op?) — (4 om)?— Ac®— DA

If aABC be any triangle, and ¢/, 8/, o' the middle points of
AB, AC, CB, then, o0 being any point in space,
AB’+BC'4ca’=4(0a’+0B*+0C%) —4 (0B'? 400" 24-04'%).

If aBc be any triangle and M its mean point, then
AB? 4 BC*4- ca? = 3 (aM’+ BM’+ cM?).

Points p, Q, R, s are taken in the sides aB, BC, €D, DA Of a
parallelogram, so that Ap = maB, BQ = msBc, etc. Show

that PQRs is a parallelogram whose mean point coincides
with that of aABcD.
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18.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

QUATERNIONS,

The sides of any quadrilateral are divided equably at », Q,
R, 8, and the points of division joined in succession. If
pQrs is a parallelogram, the original quadrilateral is a
parallelogram,

The middle points of the three diagonals of a complete
quadrilateral are collinear.

If any quadrilateral be divided into two quadrilaterals by
any cutting line, the centers of the three are collinear.
If a circle be described about the mean point of a paral-
lelogram as a center, the sum of the squares of the lines
drawn from any point in its circumference to the four

angular points of the parallelogram is constant.

A quadrilateral possesses the following property : any point
being taken, and four triangles formed by joining this
point with the angular points of the figure, the centers
of gravity of these triangles lie in the circumference of a
circle. Prove that the diagonals of this quadrilateral are
at right angles to each other.

The sum of the vector perpendiculars from a, B, ¢,.... on
any line through their mean point is zero.

a, b, c are the three adjacent edges of a rectangular paral-
lelopiped. Show that the area of the triangle formed by

' joining their extremities is 3 Vb*c*+ a*c*+ a®b®.

Given the co-ordinates of A, B, ¢, D referred to rectangular
axes. Find the volume of the pyramid o—aBcp, o being
the origin.

Any plane through the middle points of two opposite edges
of a tetraedron bisects the latter.

The chord of contact of two tangents to a circle drawn
from the same point is perpendicular to the line joining
that point with the center.

If two circles cut each other and from one point of section
a diameter be drawn to each circle, the line joining their
extremities is parallel to the line joining their centers,
and passes through the other point of section.
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The square of the sum of the diameters of two cireles, tan-
gent at a common point, is equal to the sum of the
squares of any two common chords through the point of
tangency, at right angles to each other.

T is any point without a circle whose centre is ¢; from T
draw two tangents TP, TQ, also any line cutting the circle
in v, and PQ in R; draw cs perpendicular to Tv. Then
SR . 8T = 8V".

If a series of circles, tangent at a common point, are cut
by a fixed circle, the lines of section meet in a point.

In Ex. 26, the intersections of the pairs of tangents to the
fixed circle, at the points of section, lie in a straight
line.

If three given circles are cut by any circle, the lines of
section form a triangle, the loci of whose angular points
are right lines perpendicular to the lines joining the
centers of the given circles.

The three loci of Ex. 28 meet in a point.

Given the base of an isosceles triangle, to find the locus of
the vertex.

Find the locus of the center of a circle which passes through
two given points.

Find the locus of the center of a sphere of given radius,
tangent to a given sphere.

The locus of the point from which two circles subtend
equal angles is a circle, or a right line.

Given the base of a triangle, and m times the square of
one side plus n times the square of the other, to find the
locus of the vertex.

Given the base and the sum of the squares of the sides of
a triangle, to find the locus of the vertex.

In Ex. 35, given the difference of the squares, to find the
locus.
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37.

38.

39.

40.

41.

42.

43.
44,
45.

46.

QUATERNIONS.

oB and oA are any two lines, and mp is a line parallel to
oB. Find the locus of the intersection of 0@ and BQ
drawn parallel to Ap and op, respectively.

From a fixed point P, on the surface of a sphere, chords
pp', P, .... are drawn. Find the locus of a point o on
these chords, such that pp'. Po = m2.

A line of constant length moves with its extremities on two
straight lines at right angles to each other. Find the
locus of its middle point.

Find the locus of a point such that if straight lines be
drawn to it from the four corners of a square, the sum
of their squares is constant.

Find the locus of a point the square of whose distance
from a given point is proportional to its distance from a
given line.

Find the locus of the feet of perpendiculars from the origin
on planes cutting off pyramids of equal volume from
three rectangular co-ordinate axes.

Given the base of a triangle and the ratio of the sides, to
find the locus of the vertex.

Show that VapVp8 = (VaB)? is the equation of a hyperbola
whose asymptotes are parallel to a and 8.

Find the point on an ellipse the tangent to which cuts off
equal distances on the axes.

A and B are two similar, similarly situated, and concentric
ellipses ; c is a third ellipse similar to A and =, its center
being on the circumference of B, and its axes parallel to
those of A and B: show that the chord of intersection of
A and B is parallel to the tangent to B at the center of c.

Presswork BY GINN & Co., BosToN.
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Wentworth & Hill’s Exercises in Algebra.

I. EXERCISE MANUAL. 12mo. Boards. 232 pages. Mailing price,
40 cts.; Introduction price, 35 cts. — II. EXAMINATION MANUAL. I2mo,
Boards. 159 pages. Mailing price, 40 cts.; Introduction price, 35 cts.
Both in one volume, 70 cts. Answers to both parts together, 25 cts.

The first part (Exercise Manual) contains about 4500 problems
classified and arranged according to the usual order of text-books
in Algebra; and the second part (Examination Manual) contains
nearly 300 examination-papers, progressive in character, and well
adapted to cultivate skill and rapidity in solving problems.

Wentworth & Hill’s Exercises in Arithmetic.

I. ExercisE MANUAL. II. EXAMINATION MANUAL. 12mo. Boards.
148 pages. Mailing price, 40 cts.; Introduction price, 35 cts. Botk in
one volume, 0 cts. Answers to both parts together, 25 cts.

The first part (Exercise Manual) contains problems for daily
practice, classified and arranged in the common order; and the
second part (Examination Manual) contains 300 examination-papers,
progressive in character. The second part has already been issued,
and the first part will be ready in August, 1886.

Analytic Geometry.

By G. A. WENTWORTH. 12mo. Half morocco. ooo pp. Mailing

price, $0.00; for Introduction,

The aim of this work is to present the elementary parts of the
subject in the best form for class-room use.

The connection between a locus and its equation is made perfectly
clear in the opening chapter.

The exercises are well graded and designed to secure the best
mental training.

By adding a supplement to each chapter provision is made for a
shorter or more extended course, as the time given to the subject
will permit.

The book is divided into chapters as follows : —

Chapter 1. Loci and their Equations.
“ II. The Straight Line.
“ III. The Circle.
“ IV. Different Systems of Co-ordinates.
“ V. The Parabola.
“ VI. The Ellipse.
¢“  VIL The Hyperbola.
#  VIII. The General Equation of the Second Degree.
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Peirce’s Three and Four Place Tables of Loga-

rithmic and Trigonometric Functions. By JAMES MILLS PEIRCE,
University Professor of Mathematics in Harvard University. Quarto.
Cloth. Mailing Price, 45 cts.; Introduction, 40 cts.

Four-place tables require, in the long run, only half as much time
ss five-place tables, one-third as much time as six-place tables, and
one-fourth as much as those of seven places. They are sufficient
for the ordinary calculations of Surveying, Civil, Mechanical, and
Mining Engineering, and Navigation; for the work of the Physical
or Chemical Laboratory, and even for many computations of Astron-
omy. They are also especially suited to be used in teaching, as they
illustrate principles as well as the larger tables, and with far less
expenditure of time. The present compilation has been prepared
with care, and is handsomely and clearly printed.

Elements of the Differential Calculus.

With Numerous Examples and Applications. Designed for Use as a
College Text-Book. By W. E. BYERLY, Professor of Mathematics,
Harvard University. 8vo. 273 pages. Mailing Price, $2.15; Intro-
duction, $2.00.

This book embodies the results of the author’s experience in
teaching the Calculus at Cornell and Harvard Universities, and is
intended for a text-book, and not for an exhaustive treatise. Its
peculiarities are the rigorous use of the Doctrine of Limits, as a
foundation of the subject, and as preliminary to the adoption of the
more direct and practically convenient infinitesimal notation and
nomenclature ; the early introduction of a few simple formulas and
methods for integrating ; a rather elaborate treatment of the use of
infinitesimals in pure geometry; and the attempt to excite and keep
up the interest of the student by bringing in throughout the whoie
book, and not merely at the end, numerous applications to practical
problems in geometry and mechanics. '

James Mills Peirce, Prof. of |is general without being superficial;
Moath., Harvard Univ. (From the Har-| limited to leading topics, and yet with~
vard Register) : In mathematics, as in | in its limits; thorough, accurate, and

other branches of study, the need is| practical; adapted to the communica-
now very much felt of teaching which! tion of some degree of power, as well
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as knowledge, but free from details
which are important only to the spe-
cialist. Professor Byerly's Calculus
appears to be designed to meet this
want. . . . Such a plan leaves much
room for the exercise of individual
judgment; and differences of opinion
will undoubtedly exist in regard to one
and another point of this book. But
all teachers will agree that in selection,
arrangement, and treatment, it is, on
the whole, in a very high degree, wise,
able, marked by a true scientific spirit,
and calculated to develop the same
spirit in the learner. ... The book
contains, perhaps, all of the integral
calculus, as well as of the differential,
that is necessary to the ordinary stu-
dent. And with so much of this great
scientific method, every thorough stu-
dent of physics, and every general
scholar who feels any interest in the
relations of abstract thought, and is
capable of grasping a mathematical
idea, ought to be familiar, One who
aspires to technical learning must sup-
plement his mastery of the elements
by the study of the comprehensive
theoretical treatises. ... But he who is
thoroughly acquainted with the book
before us has made a long stride into
a sound and practical knowledge of
the subject of the calculus, He has
begun to be a real analyst,

H. A. Newton, Prof. of Mathk. in
Yale Coll., New Haven : 1 have looked
it through with care, and find the sub-
ject very clearly and logically devel-
oped. I am strongly inclined to use it
in my class next year.

8. Hart, recent Prof. of Math. in
Trinity Coll., Conn.: The student can
hardly fail, I think, to get from the book
an exact, and, at the same time, a satis-
factory explanation of the principles on
which the Calculus is based; and the
introduction of the simpler methods of

integration, as they are needed, enables
applications of those principles to be
introduced in such a way as to be both
interesting and instructive,

Charles Kraus, Techniker, Pard-
ubits, Bokemia, Austria ; Indem ich
den Empfang Ihres Buches dankend
bestaetige muss ich Ihnen, hoch geehr-
ter Herr gestehen, dass mich dasselbe
sehr erfreut hat, da es sich durch
grosse Reichhaltigkeit, besonders klare
Schreibweise und vorzuegliche Behand-
lung des Stoffes auszeichnet, und er-
weist sich dieses Werk als ‘eine bedeut-
ende Bereicherung der mathematischen
Wissenschaft.

De Volson Wood, Prof. of
Math., Stevens’ Inst, Hoboken, N.5.:
To say, as I do, that it is a first-class
work, is probably repeating what many
have already said for it. I admire the
rigid logical character of the work,
and am gratified to see that so able a
writer has shown explicitly the relation
between Derivatives, Infinitesimals, and
Differentials, The method of Limits
is the true one on which to found the
science of the calculus. The work is
not only comprehensive, but no vague-
ness is allowed in regard to definitions
or fundamental principles.

Del Kemper, Prof. of Math.,
Hampden Sidney Cold., Va.: My high
estimate of it has been amply vindi-
cated by its use in the class-room.

R. H. Graves, Prof. of Malh.,
Univ. of North Carolina: 1 have al-
ready decided to use it with my next
class; it suits my purpose better than
any other book on the same subject
with which I am acquainted.

Edw. Brooks, Author of a Series
of Math. : Its statements are clear and
scholarly, and its methods thoroughly
analytic and in the spirit of the latest
mathematical thought.
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Syllabus of a Course in Plane Trigonometry.

By W. E. BYerLy. 8vo.

8 pages.

Mailing Price, 10 cts.

Syllabus of a Course in Plane Analytical Geom-

etry. By W. E. BYErLy. 8vo.

12 pages. Mailing Price, 10 cts.

Syllabus of a Course in Plane Analytic Geom-

etry (Advanced Course.) By W. E. BYERLY, Professor of Mathe-

matics, Harvard University. 8vo.

12 pages. Mailing Price, 10 cts.

Syllabus of a Course in Analytical Geometry of

Three Dimensions.
Price, 10 cts.

By W. E. ByerLy. 8vo.

10 pages. Mailing

Syllabus of a Course on Modern Methods in

Analytic Geometry. By W. E. BYERLY.

Price, 10 cts.

8vo. 8 pages. Mailing

Syllabus of a Course in the Theory of Equations.

By W. E. BYerLy. 8vo.

8 pages.

Mailing Price, 10 cts.

Elements of the Integral Calculus.

By W. E. ByErLy, Professor of Mathematics in Harvard University.

8vo. 204 pages.

Mailing Price, $2.15; Introduction, $2.00.

This volume is a sequel to the author’s treatise on the Differential
Calculus (see page 134), and, like that, is written as a text-book.
The last chapter, however, —a Key to the Solution of Differential
Equations, — may prove of service to working mathematicians.

H. A. Newton, Praj! of Math.,
Yale Coll.: We shall use it in my
optional class next term.

Mathematical Visitor: The
subject is presented very clearly. Itis
the first American treatise on the Cal-
culus that we have seen which devotes
any space to average and probability,

Schoolmaster, London: The
merits of this work are as marked as

those of the Differential Calculus by
the same author.

Zion’sHerald : A text-book every
way worthy of the venerable University
in which the author is an honored
teacher. Cambridge in Massachusetts,
like Cambridge in England, preserves
its reputation for the breadth and strict-
ness of its mathematical requisitions,
and these form the spinal column of a
liberal education.
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Elements of the Differential and Integral Calculus.

With Examples and Applications. By J. M. TAYLOR, Professor of
Mathematics in Madison University. 8vo. Cloth. 249 pp. Mailing
price, $1.95; Introduction price, $1.80.

The aim of this treatise is to present simply and concisely the
fundamental problems of the Calculus, their solution, and more
common applications. Its axiomatic datum is that the change of a
variable, when not uniform, may be conceived as becoming uniform
at any value of the variable.

It employs the conception of rates, which affords finite differen-
tials, and also the simplest and most natural view of the problem of
the Differential Calculus. This problem of finding the relative
rates of change of related variables is afterwards reduced to that of
finding the limit of the ratio of their simultaneous increments ; and,
in a final chapter, the latter problem is solved by the principles of
infinitesimals.

Many theorems are proved both by the method of rates and that
of limits, and thus each is made to throw light upon the other.
The chapter on differentiation is followed by one on direct integra-
tion and its more important applications. Throughout the work
there are numerous practical problems in Geometry and Mechanics,
which serve to exhibit the power and use of the science, and to
excite and keep alive the interest of the student.

Judging from the author’s experience in teaching the subject, it
is believed that this elementary treatise so sets forth and illustrates
the highly practical nature of the Calculus, as to awaken a lively
interest in many readers to whom a more abstract method of treat-
ment would be distasteful.

Oren Root, Jr., Prof. of Matk.,
Hamilton Coll., N.Y.: In reading the
manuscript I was impressed by the
clearness of definition and demonstra-
tion, the pertinence of illustration, and
the happy union of exclusion and con-
densation, It seems to me most admir-
ably suited for use in college classes.
I prove my regard by adopting this as
our text-book on the calculus,

C. M. Charrappin, 8.J.,, S
Louis Univ. : 1 have given the book a
thorough examination, and I am satis-
fied that it is the best work on the sub-
ject I haveseen. I mean the best
work for what it was intended,—a text-
book. I would like very much to in-
troduce it in the University.

(an. 12, 1885.)
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Metrical Geometry: An Elementary Treatise on

Mensuration. By Grorce Bruce HALSTED, Ph.D., Prof. Mathema-
tics, University of Texas, Austin. 12mo. Cloth. 246 pages. Mailing
price, $1.10; Introduction, $1.00.

This work applies new principles and methods to simplify the
measurement of lengths, angles, areas, and volumes. It is strictly
demonstrative, but uses no Trigonometry, and is adapted to be taken
up in connection with, or following any elementary Geometry. It
treats of accessible and inaccessible straight lines, and of their inter-
dependence when in triangles, circles, etc.; also gives a more rigid
rectification of the circumference, etc. It introduces the natural
unit of angle, and deduces the ordinary and circular measure.
Enlisting the auxiliary powers which modern geometers have recog-
nized in notation, it binds up each theorem also in a self-explanatory
formula, and this throughout the whole book on a system which
renders confusion impossible, and surprisingly facilitates acquire-
ment, as has been tested with very large classes in Princeton College.
In addition to all the common propositions about areas, a new
method, applicable to any polygon, is introduced, which so simplifies-
and shortens all calculations, that it is destined to be universally
adopted in surveying, etc. In addition to the circle, sector, segment,
zone, annulus, etc., the parabola and ellipse are measured ; and be-
sides the common broken and curved surfaces, the theorems of
Pappus are demonstrated. Especial mention should be made of the
treatment of solid angles, which is original, introducing for the first
time, we think, the natural unit of solid angle, and making spherics
easy. For solids, a single informing idea is fixed upon of such
fecundity as to place within the reach of children results heretofore
only given by Integral Calculus. Throughout, a hundred illustrative
examples are worked out, and at the end are five hundred carefully
arranged and indexed exercises, using the metric system.

OPINIONS.

S8imon Newcomb, Nautical Al-) Alexander MacFarlane, Exam-
manac Office, Washington, D.C.: 1 am | iner in Mathematics to the University
much interested in your Mensuration, | of' Edindurgh, Scotland : The method,
and wish I had seen it in time to have | figures, and examples appear excellent,
some exercises suggested by it put into | and I anticipate much benefit from its
my Geometry, (Sept. 8, 1881.) minute perusal,
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Elementary Co-ordinate Geometry.

By W. B. SMITH, Professor of Physics, Missouri State University. 12mo.

Cloth. 312 pp. Mailing price, $2.15; for Introduction, $2.00.

While in the study of Analytic Geometry either gain of knowledge
or culture of mind may be sought, the latter object alone can justify
placing it in a college curriculum. Yet the subject may be so pur-
sued as to be of no great educational value. Mere calculation, or the
solution of problems by algebraic processes, is a very inferior dis-
cipline of reason. Even geometry is not the best discipline. In all
thinking the real difficulty lies in forming clear notions of things.
In doing this all the higher faculties are brought into play. Itis this
formation of concepts, therefore, that is the essential part of mental
training. He who forms them clearly and accurately may be safely
trusted to put them together correctly. Nearly every seeming mis-
take in reasoning is really a mistake in conception.

Such considerations have guided the composition of this book.
Concepts have been introduced in abundance, and the proofs made
to hinge directly upon them. Treated in this way the subject
seems adapted, as hardly any other, to develop the power of
thought.

Some of the special features of the work are : —

1. Its size is such it can be mastered in the time generally
allowed.

2. The scoPE is far wider than in any other American work.

3. The combination of small size and large scope has been secured
through SUPERIOR METHODS, — modern, direct, and rapid.

4. Conspicuous among such methods is that of DETERMINANTS,
here presented, by the union of theory and practice, in its real
power and beauty.

5. Confusion is shut out by a consistent and self-explaining
NOTATION.

6. The ORDER OF DEVELOPMENT is nafural, and leads without
break or turn from the simplest to the most complex. The method
is heuristic. :

7- The student’s grasp is strengthened by numerous EXERCISES.

8. The work has been TESTED at every point IN THE CLASS-
ROOM.
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Determinants.

The Theory of Determinants: an Elementary Treatise. By PauL H.
Hanus, B.S., Professor of Mathematics in the University of Colorado.
8vo. Cloth. o000 pages. Mailing price, $0.00; for Introduction, $0.00.

This is a text-book for the use of students in colleges and tech-
nical schools. The need of an American work on determinants
has long been felt by all teachers and students who have extended
their reading beyond the elements of mathematics. The importance
of the subject is no longer overlooked. The shortness and elegance
imparted to many otherwise tedious processes, by the introduction
of determinants, recommend their use even in the more elementary
branches, while the advanced student cannot dispense with a knowl-
edge of these valuable instruments of research. Moreover, deter-
minants are employed by all modern writers.

This book is written especially for those who have had no previous
knowledge of the subject, and is therefore adapted to self-instruction
as well as to the needs of the class-room. To this end the subject
is at first presented in a very simple manner. As the reader ad-
vances, less and less attention is given to details. .Throughout the
entire work it is the constant aim to arouse and enliven the reader’s
interest by first showing how the various concepts have arisen
naturally, and by giving such applications as can be presented with-
out exceeding the limits of the treatise. The work is sufficiently
comprehensive to enable the student that has mastered the volume
to use the determinant notation with ease, and to pursue his further
reading in the modern higher algebra with pleasure and profit.

In Chapter I. the evolution of a theory of determinants is touched
upon, and it is shown how determinants are produced in the process
of eliminating the variables from systems of simple equations with
some further preliminary notions and definitions.

In Chapter II. the most important properties of determinants are
discussed. Numerous examples serve to fix and exemplify the prin-
ciples deduced.

Chapter III. comprises half the entire volume. It is the design
of this chapter to familiarize the reader with the most important
special forms that occur in application, and to enable him to realize
the practical usefulness of determinants as instruments of research.

[Ready Fune 1.
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Examples of Differential Equations.

By GEORGE A. OsBORNE, Professor of Mathematics in the Massachusetts
Institute of Technology, Boston. 12mo. Cloth. viii+ 50 pp. Mail-
ing price, 60 cts.; for Introduction, 50 cts.

Notwithstanding the importance of the study of Differential Equa-
tions, either as a branch of pure mathematics, or as applied to
Geometry or Physics, no American work on this subject has been
published containing a classified series of examples. This book is
intended to supply this want, and provides a series of nearly three
hundred examples with answers systematically arranged and grouped
under the different cases, and accompanied by concise rules for the
solution of each case.

It is hoped that the work will be found useful, not only in the
study of this important subject, but also by way of reference to
mathematical students generally whenever the solution of a differen-
tial equation is required.

Elements of the Theory of the Newtonian Poten-

tial Function. By B. O. PEIRCE, Assistant Professor of Mathematics

and Physics, Harvard University. 12mo. Cloth. 154 pages. Mailing

price, $1.60; for Introduction, $1.50.

A knowledge of the properties of this function is essential for
electrical engineers, for students of mathematical physics, and for
all who desire more than an elementary knowledge of experimental
physics.

This book, based upon notes made for class-room use, was written
because no book in English gave in simple form, for the use of
students who know something of the calculus, so much of the theory
of the potential function as is needed in the study of physics.
Both matter and arrangement have been practically adapted to the
end in view.

CHAPTER 1. The Attraction of Gravitation.
II. The Newtonian Potential Function in the Case of Gravitation.
III. The Newtonian Potential Function in the Case of Repulsive
Forces.
IV. Surface Distributions. Green’s Theorem.
V. Application of the Results of the Preceding Chapters to
Electrostatics.


















